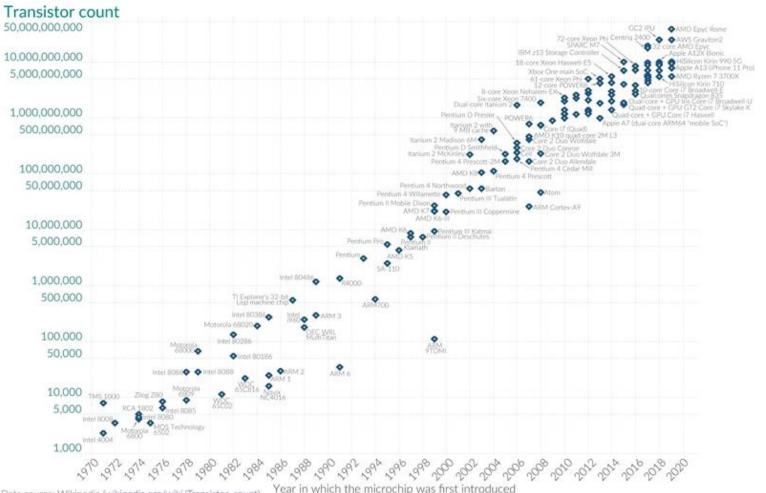
THE USE OF ACTIVE LEARNING FOR EFFECTIVE EXPLORATION OF

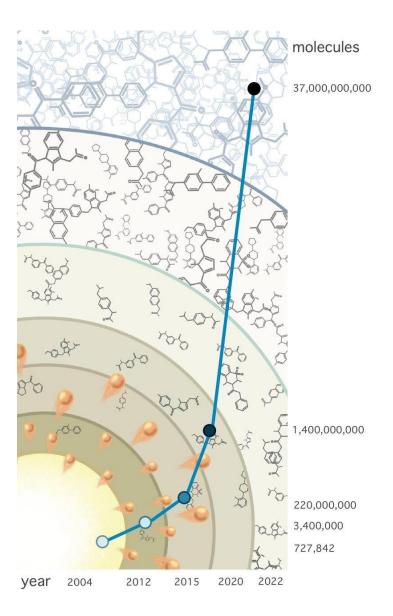
CHEMICAL UNIVERSE

ICANN , SEPT 19, 2024

ARTEM CHERKASOV UBC

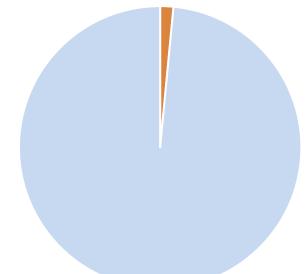

COMMERCIAL INTERESTS

ABT Therapeutics LAST Innovation Variational AI OPTIC PHOTONIC RAKOVINA THERAPEUTICS NIDO PHARMCAEUTICALS ASTRA ZENECA



MOORE LAW : COMPUTERS BECOME CHEAPER AND MORE POWERFUL

Example: number of transistors per chip <u>multiplies by 2 every 2 years</u>


CHEMICAL SPACE REMAINS INACCESSIBLE TO DRUG DISCOVERY

DOCKING MISSES OUT 99.9% OF ALREADY AVAILABLE MOLECULES

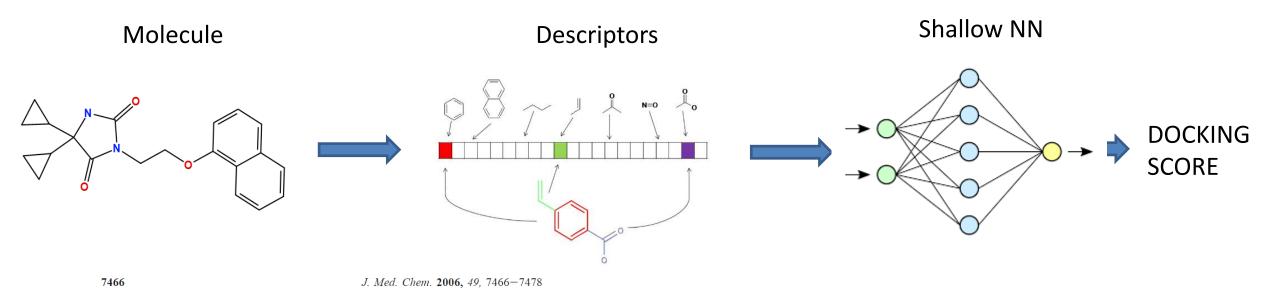
TOTAL NUMBER OF POSSIBLE DRUG-LIKE MOLECULES : 10⁶⁰ -10¹⁰⁰

1B MOLECULES DOCKING TIME 2.5YRS

News&views

Virtual libraries

nature chemical biology


https://doi.org/10.1038/s41589-022-01233-x

The 'Big Bang' of the chemical universe

Artem Cherkasov

WHAT IF WE EMULATE DOCKING SCORES??

Progressive Docking: A Hybrid QSAR/Docking Approach for Accelerating In Silico High Throughput Screening

Artem Cherkasov,*,† Fuqiang Ban,† Yvonne Li,‡ Magid Fallahi,§ and Geoffrey L. Hammond§

Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, and Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 3J5

Received August 8, 2006

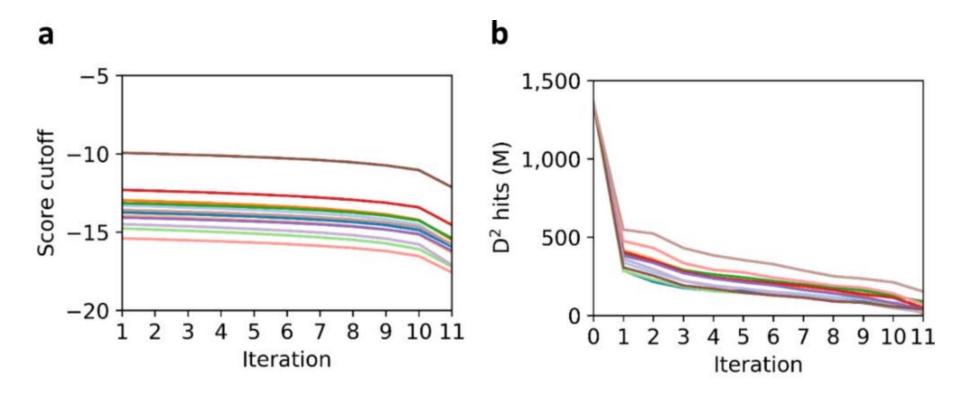
A combination of protein-ligand docking and ligand-based QSAR approaches has been elaborated, aiming to speed-up the process of virtual screening. In particular, this approach utilizes docking scores generated for already processed compounds to build predictive QSAR models that, in turn, assess hypothetical target binding affinities for yet undocked entries. The "progressive docking" has been tested on drug-like substances from the NCI database that have been docked into several unrelated targets, including human sex hormone binding globulin (SHBG), carbonic anhydrase, corticosteroid-binding globulin, SARS 3C-like protease, and HIV1 reverse transcriptase. We demonstrate that progressive docking can reduce the amount of computations

WHAT IF WE PREDICT DOCKING SCORES (AGAIN)??

MODELS TESTED:

DEEP NEURAL NETWORK (DNN) RANDOM FOREST (RF) SUPPORT VECTOR MACHINE (SVM) LOGISTIC REGRESSION (LR)

FINGERPRINTS TESTED

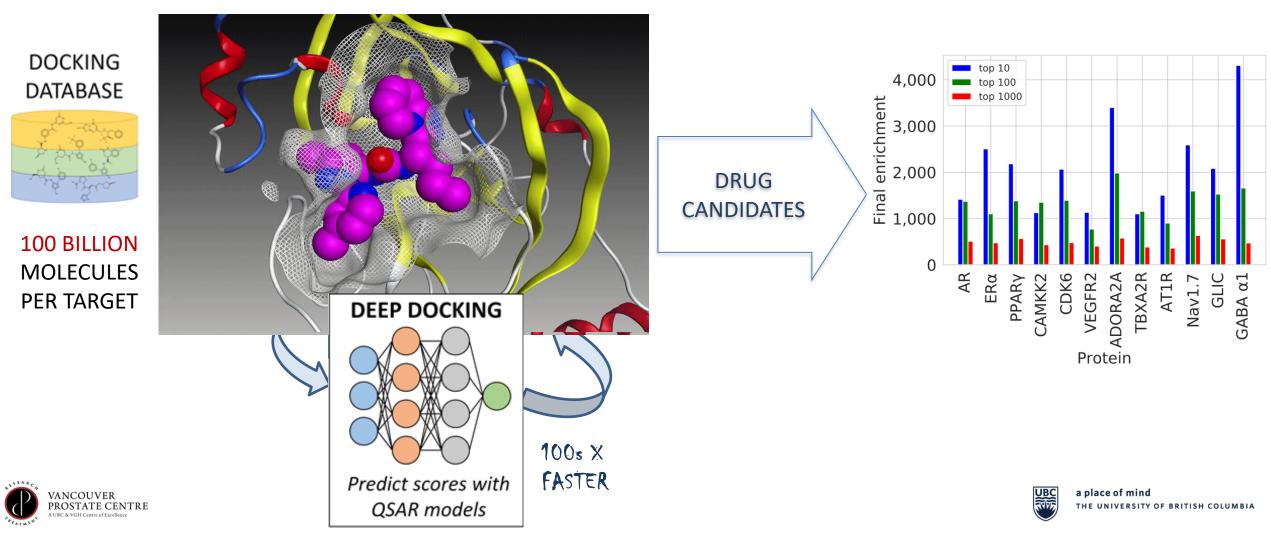

MACCS (166 BITS) MORGAN WITH DIFFERENT R PHARMACOPHORE Input Layer Hidden Layers Dutput (1024) (500-2000)

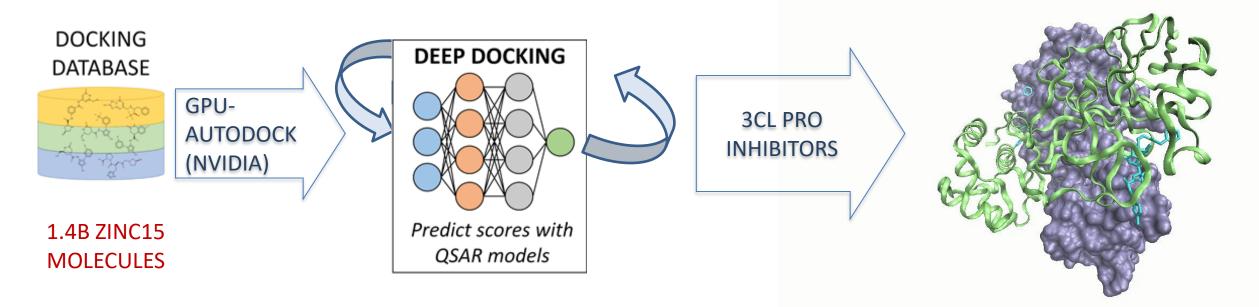
MORGAN WITH RADIUS 2 AND 1024 BITS + DNN SHOWED THE BEST PERFORMANCE

DEEP DOCKING PERFORMANCE ON 12 MAJOR DRUG TARGETS

PREDICTED HIGH SCORING MOLECULES AUGMENT THE TRAINING SET OF THE MODEL (1% IN TOTAL)

ACTIVE/INACTIVE CUT-OFF TO IS MADE MORE STRINGENT AT EVERY ITERATION

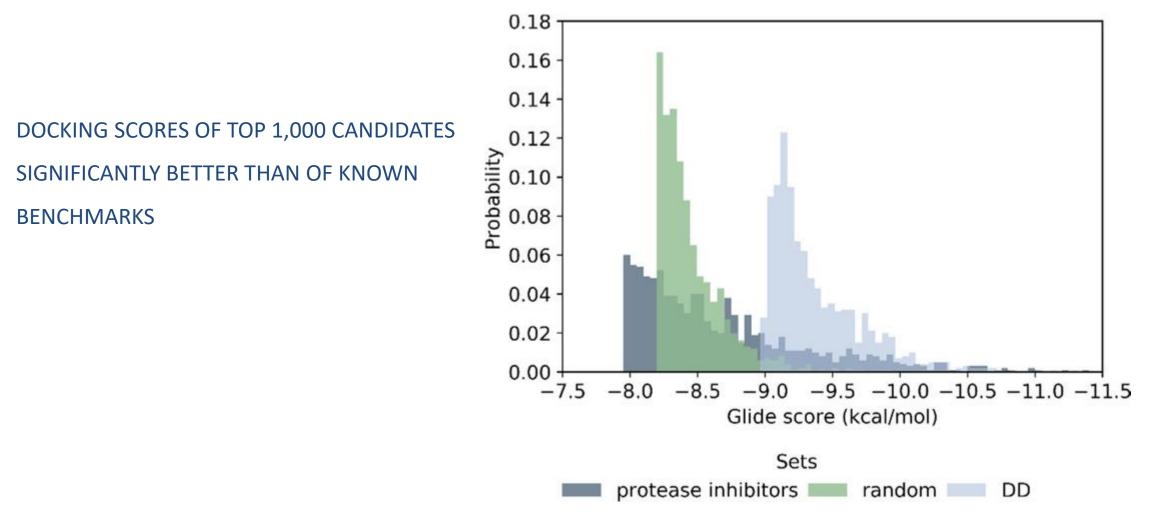

NR OF MOLECULES PREDICTED AS VIRTUAL HITS AFTER EACH ITERATION IS REDUCED



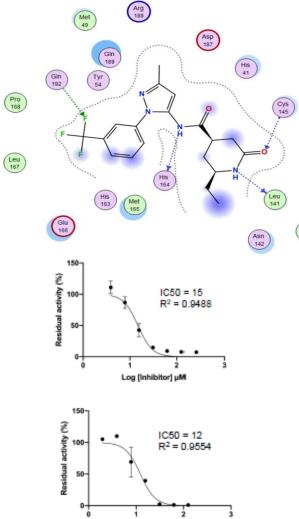
DEEP DOCKING PROVIDES 1000-S FOLD ACCELERATION OF VIRTUAL SCREENING

TARGET PROTEIN/TARGET SITE

DEEP DOCKING FOR SARS-COV-2 DRUG DISCOVERY



SARS-COV-2 3CL PROTEASE


DEEP DOCKING IDENTIFIED 585 POTENTIAL 3CL PRO INHIBITORS

30+ INHIBITORS OF 3CL PRO ENZYME ARE CONFIRMED ACTIVE

Ser 144

Log [Inhibitor] µM

OUR FIRST PUBLICATION WITH INITIAL DRUG CANDIDATES AGAINST COVID19 APPEARED AS EARLY AS **FEB19, 2020** 1,000 CANDIDATE 3CL PRO INHIBITORS

DISCLOSED TO THE PUBLIC

molecular informatics models – molecules – systems

Full Paper 🔂 Free Access

Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds

Anh-Tien Ton, Francesco Gentile, Michael Hsing, Fuqiang Ban, Artem Cherkasov 🗙

First published: 11 March 2020 | https://doi.org/10.1002/minf.202000028 | Citations: 88

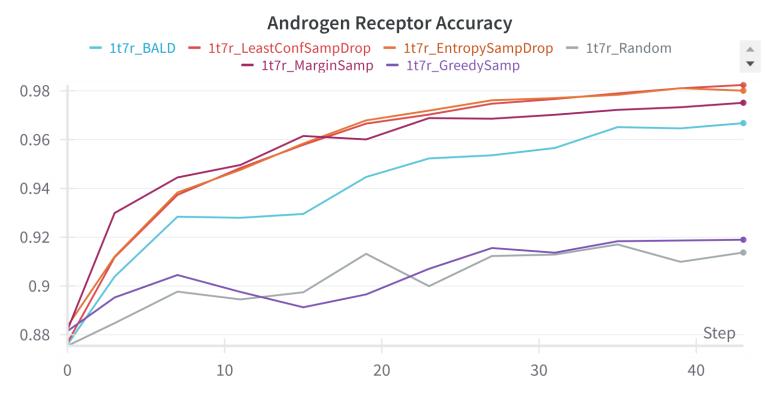
OUT OF 585 PREDICTED COMPOUNDS 30+ ACTIVE (5%)

BILLION-MOLECULES DRUG DISCOVERY

LARGER DOCKING LIBRARIES YIELD BETTER AND MORE HITS (LYU ET AL, NATURE, 2019)

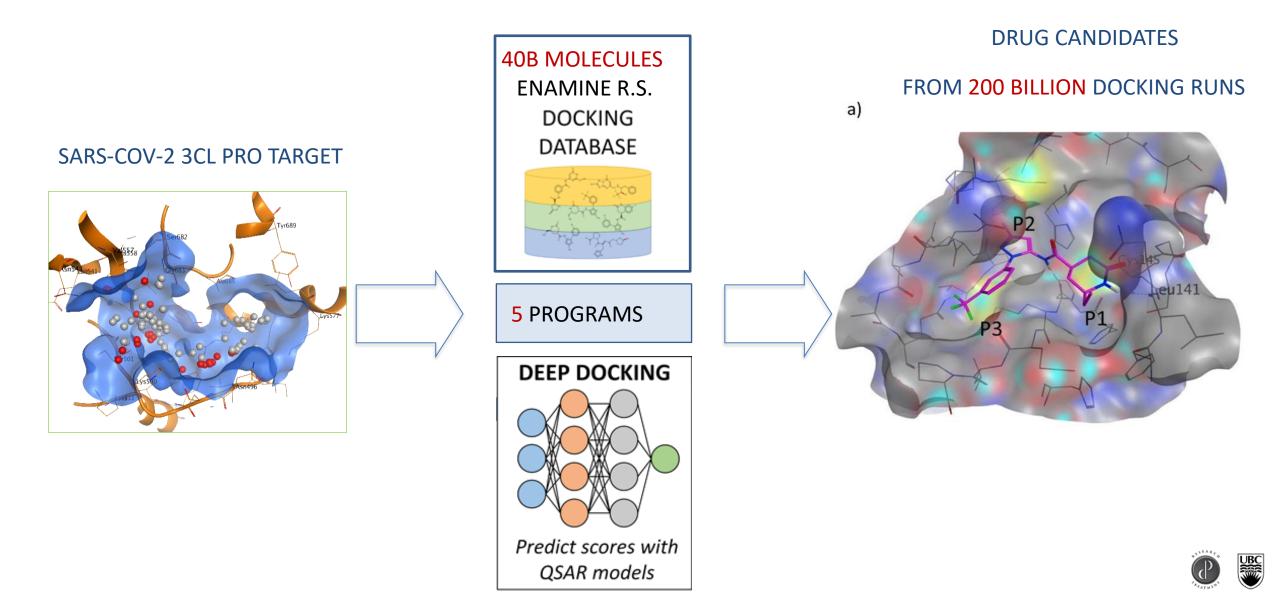
MANY METHODS FOLLOWED OUR 2020 PAPER ON SCREENING 1B+ MOLECULES

METHOD	REQUIRED TIME	SERVERS	DOCKING PROGRAM	TARGET	REFERENCE
OPENEYE ORION	<1 WEEK	45,000	FRED	PNP/HSP90	HTTPS://WWW.EYESOP EN.COM/ORION
AUTODOCK-GPU	<1 WEEK	27,600	AUTODOCK- GPU	SARS-COV-2 MPRO	ACHARYA ET AL, CHEMRXIV, 2020
VIRTUALFLOW	4 WEEKS	8,000	QUICKVINA, VINA,	KEAP1-NRF2 INTERACTION	GORGULLA ET AL, NATURE, 2020
DEEP DOCKING	5 WEEKS	4	FRED, GLIDE	MULTIPLE TARGETS	GENTILE ET AL, CENTRAL SCIENCE, 2020

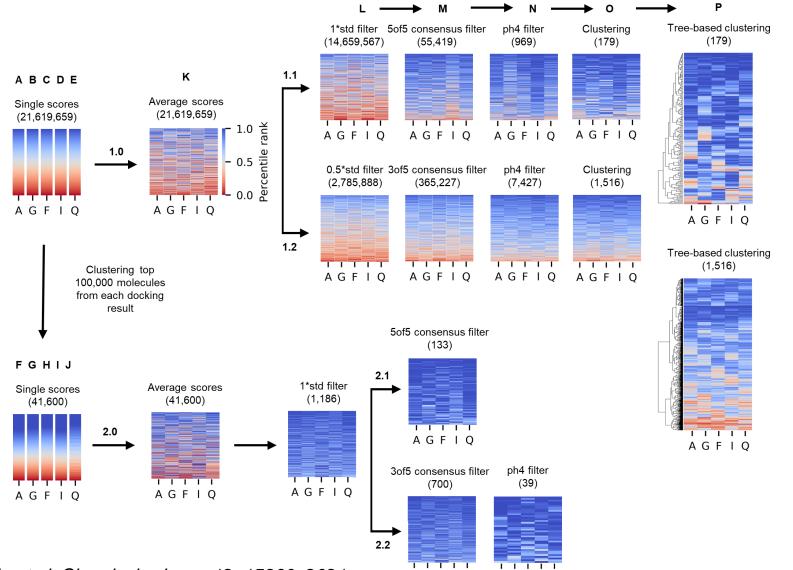


COMPARING ACQUISITION FUNCTIONS ON DOCKING DATA

Dataset: Random 3M ZINC compounds docked to ANDROGEN RECEPTOR LIGAND-BINDING DOMAIN (PDB: 1T7R)


Task:

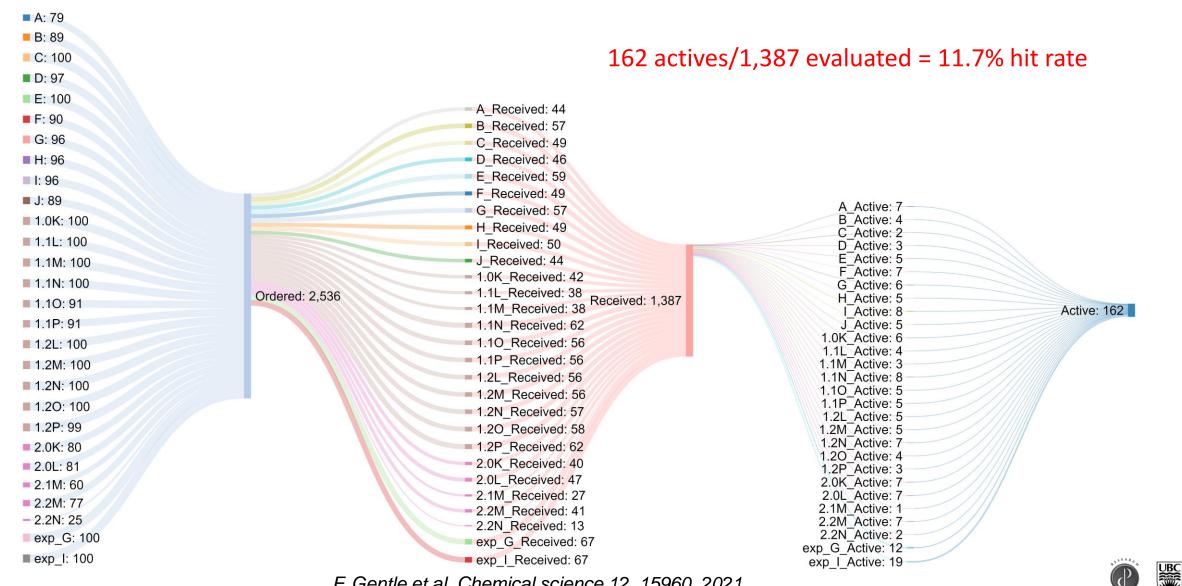
- Build a classification model to distinguish good binders from bad.
- Demonstrate the effectiveness of uncertainty based acquisition functions over greedy acquisition.



Uncertainty-based acquisition functions, such as MarginSampling, EntropySampling, and Bayesian Active Learning with dropout, improve model performance over the GreedySampling approach.

FULLY AUTOMATED DOCKING WITHOUT "EXPERT IN THE LOOP"

NO "EXPERT IN THE LOOP"

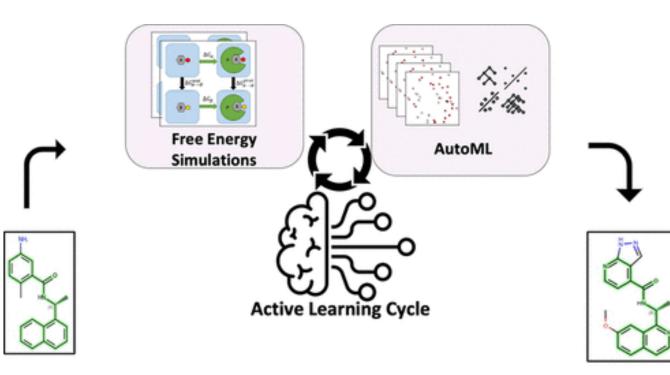


AGFIQ

AGFIQ

F. Gentle et al. Chemical science 12, 15960, 2021

AUTOMATED AND EXPERT-IN-THE-LOOP HIT RATES


F. Gentle et al. Chemical science 12, 15960, 2021

SIMILAR APPROACHES EMERGED

Method	Emulated docking score	Descriptors	QSAR function	References	Bucinsky et al	AutoDock	SOAP molecular descriptors; SchNet 128 bits vectors	Keras neural network Deep tensor neural network Gradient boosted decision tree	135
DEEP DOCKING	GLIDE SP Quick Vina2 FRED GPU-AutoDock ICM	Morgan fingerprints	Deep Neural Network	105	approach				
Pyzer-Knapp approach	AutoDock-Vina	Extended connectivity fingerprints	Bayesian optimization	126	NeuralDock	MedusaDoc k	36 bits atom type vectors with 7 channels for ligands; 10 × 10 × 10, 2- angstrom resolution images with 8 channels for protein pockets	TensorFlow Neural Network	136
Jastrzebski et al approach	GLIDE XP SMINA	Contact fingerprints	Deep Neural Network	127					
MolPal	AutoDock-Vina	Morgan fingerprints	Neural network Random forest Message passing neural network	128					
MFP approach	DOCK	Morgan fingerprints	Linear regression	129					
LEAN-DOCKING	GOLD AutoDock-Vina FRED GLIDE SP MOE	Unfolded counted atom pairs fingerprints	Regressor model	130	MILCDOCK	LeDock PLANT Vina AutoDock 4 rDock	Pose-based RMSD values; Docking programs' metadata	Gradient boosted trees Random forest Naïve Bayes Neural Network	137
HASTEN	GLIDE SP FRED	Morgan fingerprints	Message passing neural network	131					
MEMES	AutoDock	Extended connectivity fingerprints; Mol2Vec descriptors; CDDD descriptors	Convolutional neural network Recurrent neural network	132	DOCKSTRING	AutoDock- Vina	Various fingerprints	Gradient boosted trees Gaussian processes	138
Yang et al approach	GLIDE SP DOCK 3.7	Morgan fingerprints; Molecular graphs	Graph-Convolutional Neural Network	133				Graph neural network	
	DOCK 3.7	wolecular graphs	Random forest		oto	oto	oto	etc	
V-DOCK	AutoDock-Vina	2048 RDKit fingerprints combined with 166 bits MACSS fingerprints	PyTorch deep learning library	134	etc	etc	etc	ell	Ø

UBC

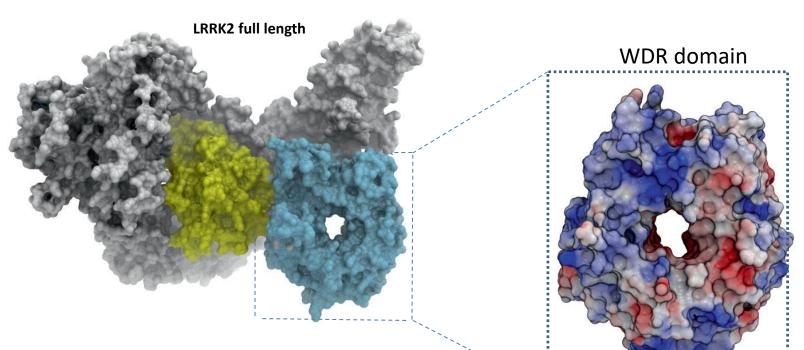
AL-AUTOML WORKFLOW PROVEN IN DIFFERENT CONTEXT

100x potency improvement with 3% of library sampled

Filipp Gusev, Evgeny Gutkin, Maria G. Kurnikova, and Olexandr Isayev. Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling J. Chem. Inf. Model. 2023, 63, 2, 583–594. <u>https://doi.org/10.1021/acs.jcim.2c01052</u>

ACS Publications

www.acs.org



LATEST INITIATIVES

- A public benchmarking project to compare and improve small-molecule hitfinding algorithms through cycles of prediction and experimental testing
- LRRK2 WDR: Potential Drug target for familial Parkinson's Disease
- No known small molecule inhibitors

CACHE-1

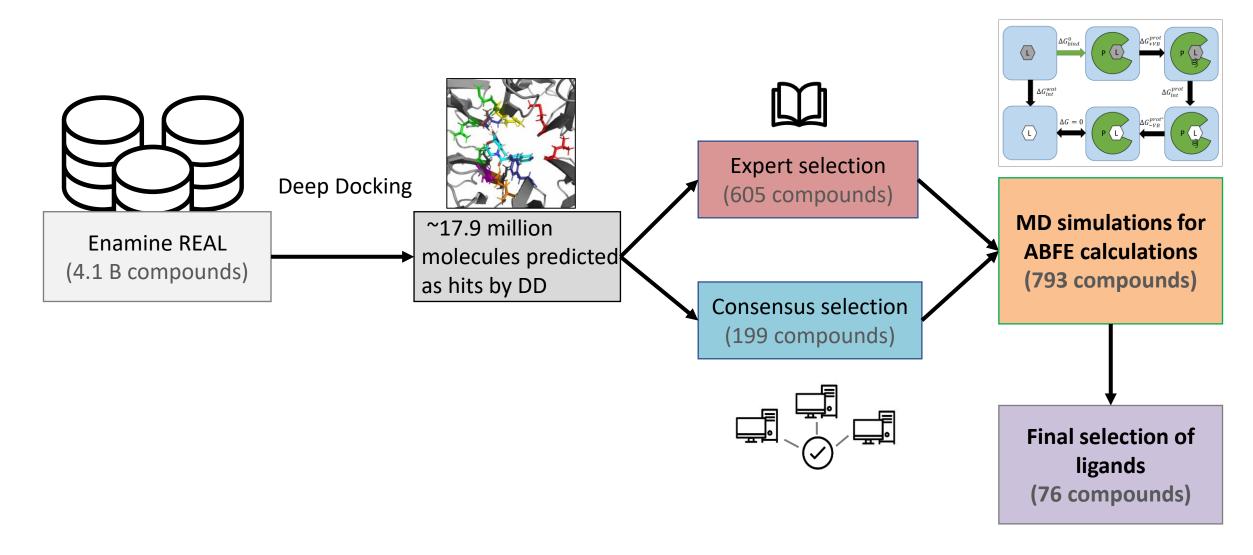
Full-length LRRK2 (3.5 Å) (PDB: 7LHT) contains both a kinase domain and a WD40 repeat (WDR) domain.

LRRK2 WDR domain (2.7 Å) [PDB: 6DLO]

https://cache-challenge.org/

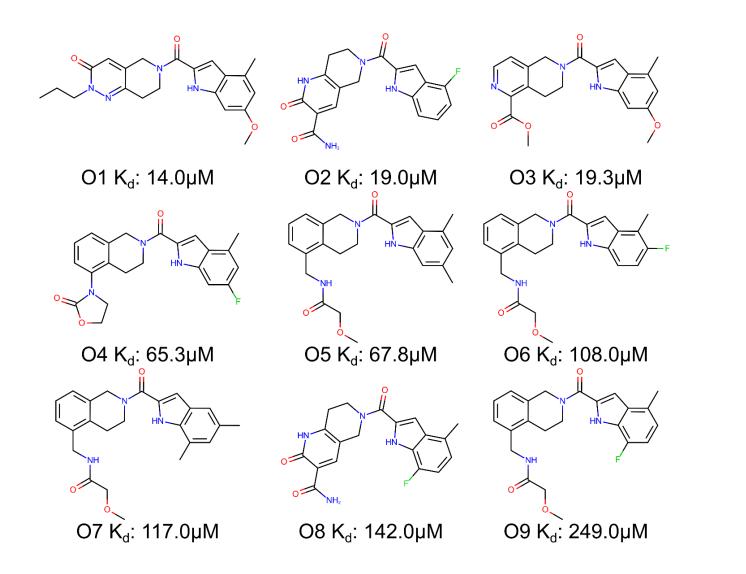
CACHE-1 TEAM: ACTIVE LEARNING²

UBC



Slide courtesy CMU

OVERVIEW OF THE ROUND 1 PIPELINE



Gutkin E, Gusev F, Gentile F, Ban F, Koby SB, Narangoda C, *et al.* In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations. *ChemRxiv*. **2024**; doi:10.26434/chemrxiv-2023-Inzvr

Slide courtesy CMU

EXPERIMENTALLY VALIDATED HITS

hit	ΔΔG	K _d (hit 1) / K _d			
01	-2.1	34.3			
02	-1.92	25.3			
03	-1.91	24.9			
04	-1.18	7.4			
05	-1.16	7.1			
06	-0.89	4.4			
07	-0.84	4.1			
08	-0.72	3.4			
09	-0.39	1.9			

 K_{d} (hit 1) = 480 μ M

CRITICAL ASSESSMENT OF COMPUTATIONAL HIT-FINDING EXPERIMENTS

Participant	Participan t ID	Aggregated score	Computational Method
David Koes, University of Pittsburgh	1181	18	Link
Olexandr Isayev & Maria Kurnikova, Carnegie Mellon University & Artem Cherkasov, University of British Columbia	1209	18	Link
Christina Schindler, Merck KGaA	1193	17	Link
Dmitri Kireev, University of Missouri	1183	16	Link
Christoph Gorgulla, St. Jude Children's Research Hospital and Harvard University	1195	16	Link
Didier Rognan, Université Strasbourg	1202	16	Link
Pavel Polishchuk, Palacky University	1210	16	Link
Kam Zhang, Centre for Biosystems Dynamic Research, RIKEN	1188	15	Link
Shuangjia Zheng, Shanghai Jiao Tong University (previously Galixir)	1187	14	Link
Carlos Zepeda, Treventis/UHN	1200	14	Link
Fabian Liessmann, Leipzig University	1201	14	Link
	1179	13	Link
	1205	11	Link
	1208	11	Link
Rick L. Stevens, Argonne National Laboratory	1186	9	Link

23 finalists including Merck Bayer Boehringer Ingelheim Harvard Argonne Lab etc...

UBC

TEAMS AND FUNDS

DR. FUQIANG BAN DR. MICHALE LLAMOSA DR. MICHAEL HSING

DR. FRANCESCO GENTLE

DR. ERIC LEBLANC

DR. JAMES SMITH

DR. CARL PEREZ

DR. NADA LALLOUS

DR. ALIERZA KHAN

DR. ANH-TIEN TON

HAZEM MSLATI

JAMES GLEAVE

JEAN CHARLE YAACOUB

MOHIT PANDEY

MARIIA RADAEVA

OLIVIA GARLAND

JIAYING YU

JANE FOO