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Motivation

| would rather use
metrics that I understand

like the QED score

How can we make HITL ML
for drug design more
practical for the
? community?

Build interpretable models
of chemist preferences that
can effectively integrate into

w1/, drug design workflows
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Methodology




Setting

N
We consider ] user responses about x, 1; = {(Xij’yij)}i=1 where

W] € RD<

[yj ~ Ber(sigmoid(ijgj (x)))}

|

g;(x) = (solubility(x), synthesisability(x), ...)

?

i



Setting

We assume that all users share the same g with different weights w;

= The set of features used by any expert is the union of all features

* Likelihood { Vi ~ Ber(sigmoid(WjTg(X)))}
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Horseshoe distribution

2 Unused features by an expert will show as zeros in w;

Global scale
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Setting

We assume that all users share the same g with different weights w;

- The set of features used by any expert is the union of all features

* Likelihood [ Vi ~ Ber(sigmoid(WjTg(X)))}

Horseshoe distribution

2 Unused features by an expert will show as zeros in w;

 Sparse prior [ p(wj) = HS(wj) — N(O, )nz ) }

Local scale parameter o.-

p(lj) = CauChy()‘j) for each user j
p(0) = Cauchy(v)

) v" Interpretable features
* Posterior p(W,g V) <p(Y |W,g)p(g) [T, p(w)) | [,

where W = (wy, ..., w;) € R/*P
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De novo molecular design

REINVENT
Score Modulating Block
» Scored SMILES Diversity \ z
O @
emory
: A N
e Step 1: design novel DRD2 \ S & —
bin ders Sample SMILES /
m el Augmented Score
S K Function /
Generative Reinforcement Composite scoring
Seq2Seq Model Learning function
* QED score
e hERG-QSAR
* DRD2-QSAR
1 Blaschke, T., Arus-Pous, J., Chen, H., Margreitter, C., Tyrchan, C., Engkvist, O., Papadopoulos, K., & Patronov, A. (2020). REINVENT 2.0: An Al Tool for De Novo Drug C?

Design. Journal of chemical information and modeling.



De novo molecular design with user feedback

T Explanation  Similar Actives

We are interested in the design of an new binder for the Dopamine receptor D2. We have
identified two key properties:

e Step 2: select a set of high-scored DRD2 L e
binders to be labelled by the user HQ S——

O, H
Q l How strongly do you agree with this molecule being predicted as a DRD2 binder?
(0] |
” O

* Step 3: fine-tune the DRD2-QSAR model with Y Y o

user feedback K/\'(\' .

* Step 4: resume the design process using the |
refined scoring model (RLHF) () (o) () (o ) (o)

Compound: 1/10

\ £

e 3 expert participants from AstraZeneca
e 150 actively selected molecules labelled by each expert

Nahal Y, Menke J, Martinelli J, Heinonen M, Kabeshov M, Janet JP, et al. Human-in-the-loop active learning for goal-oriented molecule generation. ChemRxiv. 2024.
12 Menke, J., Nahal, Y, Bjerrum, E.J. et al. Met i s: a python-based user interface to collect expert feedback for generative chemistry models. J Cheminform 16, 100 (2024).



Molecular features

e 2D physchem descriptors Descriptor Name Description Software
MolWt Molecular Weight (Da) RDKit
* 2048 ECFP6 NumRotaBonds Number of rotatable bonds RDKit
MolLogP Octanol-water partition coefficient (logP) RDKit
NumAromRings Number of aromatic rings RDKit
HBA Number of hydrogen bond acceptors RDKit
HBD Number of hydrogen bond donors RDKit
TPSA Topological polar surface area RDKit

SynthAcess Synthetic accessibility score Ertl et al. (2009)

QEDAlerts Structural alerts score according to the QED RDKit




Feature selection

data {

int<lower=0> N; // number of molecules
int<lower=0> J; // number of experts
D;
X;

POSterior inference int<lower=0> // number of molecular descriptors

matrix [N, D] // molecular descriptors
int<lower=0, upper=1> Y[N, J]; // binary responses from experts

° Stan programming |anguage real<lower=0> tau 0; // global shrinkage parameter
}
e MCMC sampling parameters
real<lower=0> tau; // global scale parameter
(2 chains, 2000 iterations) Vect(?r<lower=0>[D] lam[J]; // local scale pgrameters
matrix[D, J] w; // preference weights
}
model {

// Horseshoe prior
tau ~ cauchy (0, tau 0);
for (3 in 1:J) {
lam[j] ~ cauchy (0, 1);
for (d in 1:D) {
w[d, 3] ~ normal(0, lam[7J][d] * tau);
}
}

// Likelihood
for (n in 1:N) {
for (3 in 1:J) |
//Y ~ bernoulli logit(X * w);
Y[n, Jj] ~ bernoulli logit(dot product(wl[, j], X[n, 1));
}




Benchmark

Feature selection methods
* LASSO Logistic Regression

e Sparse Neural Network Classifier (3 hidden layers, softmax output)

e Random Forest Classifier

Performance metrics

* Predictive accuracy
TP +TN

Expert descriptions of their reasonings at the end of the process

A —
CUracy = rp X TN + FP + FN

* User agreement
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Expert 1: “I looked at the
structures of known DRD2
actives to judge if the new
designed ones are relevant. |
disliked molecules that
contained undesirable
substructures.”

Expert 2: “| assessed how much
| liked the molecule as a lead,
so | selected molecules that
would be synthesisable, stable
and with reasonable
lipophilicity to give them the
best chance for being made
and tested in a project. No
prior experience with the SAR.”

Expert 3: “I didn’t have much
knowledge about the DRD2
target. | selected molecules
that synthetic chemists would
be willing to test.”
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Expert feedback improves de novo molecular design

At the end of the design process, we

selected the final set of high-scored Metric (mean) Pi 0 expert With Etxlzlegfi‘;i“ﬁ}d:l on
DRDZ binders. ee Fa gEIIEI'd. e 1mndaers
Expert 1  Expert 2 Expert 3
DRD2 bioactivity score T 0.50 0.74 ** 0.49 0.55
QED score T 0.57 0.71%* 0.58 0.61**
. . 3 5 o ‘ ‘ ) ik o
* [s the design goal achieved after H{)ZAL;LEH 1P X ;‘?ff: {ig? ;?g o 2”-7’:1***
: : 3 03 MollLog . .06 . ]
Introducmg expertfeedback ’ Internal Diversity 1 0.47 .44 0.45 (.41
Novelty T 1.0 1.0 1.0 1.0
Uniqueness 1 1.0 1.0 1.0 1.0
Expert 1: “l looked at the Expert 2: “| assessed how much Expert 3: “I didn’t have much
. | liked th lecul lead knowledge about the DRD2
e How f'lght was each expert about strl‘Jctures-of kngwn DRD2 ike e molecule as a lead, nowledge about the
) ) ; ) actives to judge if the new so | selected molecules that target. | selected molecules
their reasoning in comparison designed ones are relevant. | would be synthesisable, stable that synthetic chemists would
with no feedback ? disliked molecules that and with reasonable be willing to test”
contained undesirable lipophilicity to give them the
substructures.” best chance for being made

and tested in a project. No
prior experience with the SAR.”

17" Nahal Y, Menke J, Martinelli J, Heinonen M, Kabeshov M, Janet JP, et al. Human-in-the-loop active learning for goal-oriented molecule generation. ChemRxiv. 2024.



Bayesian feature selection performs equally or better than non-
Bayesian alternatives

(a) Models trained on 2D molecular descriptors

LASSO LogReg | Sparse NN Random | Bayesian LogReg
(L1 regularization) (L1 regularization) Forest (spa rse prior)
Mean Train Accuracy 0.81 0.85 0.99 0.89
Mean Test accuracy 0.69 0.81 0.82 0.85
(Stratified 80/20 split) ’ ’ ) )

(b) Models trained on 2D molecular descriptors + ECFPs

LASSO LogReg | Sparse NN Random | Bayesian LogReg
(L1 regularization) (L1 regularization) Forest (spa rse prior)
Mean Train Accuracy 0.86 0.91 0.99 0.96
Mean Test Accuracy 0.70 0.78 0.85 0.83
(Stratified 80/20 split) ’ ’ ) |

18
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Bayesian feature selection aligns well with expert descriptions

(a) Models trained on 2D molecular descriptors

Descriptor mean weight magnitude extracted from the learned

posterior distribution of the weights

SynthAccess - 0.1 2.2 3.7
NumAromRings - -1.8 0.25 1.7
MolLogP - 0.75 1.3 0.12
HBA - 0.7 0.31 0.28
HBD - 0.2 0.18 0.04
TPSA - 0.13 0.029 0.00049
NumRotaBonds - -0.061 0.093 0.00061
MolWt - -0.025 -0.034 -0.035
Exptla-rtl Exple-rtz ExptlertB
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Expert 1: “l looked at the
structures of known DRD2
actives to judge if the new
designed ones are relevant. |
disliked molecules that
contained undesirable
substructures.”

Expert 2: “l assessed how much
| liked the molecule as a lead,
so | selected molecules that
would be synthesisable, stable
and with reasonable
lipophilicity to give them the
best chance for being made
and tested in a project. No
prior experience with the SAR.”

Expert 3: “I didn’t have much
knowledge about the DRD2
target. | selected molecules
that synthetic chemists would
be willing to test. ”



Alternative methods align less with expert descriptions

(a) Models trained on 2D molecular descriptors

LASSO LogReg

Sparse NN

Random Forest
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(b) Models trained on 2D
molecular descriptors + ECFPs

f
* 0 ©
0N #
bit41 bit1892

All molecules
containing this

All molecules
containing this motif

were disliked by motif were liked by
Expert 1 Expert 3
HO ;
% / B *
* bit202

All molecules
containing this
motif were liked by
Expert 2
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bit1892 - | -0.024
bit41 - 9.7
bit202 - 0.73
bit1073 - 8.8
bit1602 - 1.5
bit195 - 0.21
bit585 -  -0.067
bit841 - 2.2
bit715 - 4.9
bit1536 - 1.9
bit1986 - 4.7
bit1015 - 0.15
bit1795 - 2.5
bit1490 - 1.4
|
Expertl

1.2
-0.00036
9.7
2.3 0.057
20
8.5 0.2
9.4 0.5
- 15
3.1 6.1
3.5 2.6 - 10
2 1.3
-5
4 2.1
1.3 -0.055
-0
0.14 5.3
0.066 2.1 --5
2.9 0.19

| |
Expert2 Expert3

Expert 1: “l looked at the
structures of known DRD2
actives to judge if the new
designed ones are relevant. |
disliked molecules that
contained undesirable
substructures.”

Expert 2: “| assessed how much
| liked the molecule as a lead,
so | selected molecules that
would be synthesisable, stable
and with reasonable
lipophilicity to give them the
best chance for being made
and tested in a project. No
prior experience with the SAR.”

Expert 3: “I didn’t have much
knowledge about the DRD2
target. | selected molecules
that synthetic chemists would
be willing to test. ”



(b) Models trained on 2D molecular descriptors + ECFPs

LASSO LogReg

Sparse NN

Random Forest
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Summary
* We aim to enhance the transparency and practical usability of user models in drug
design.

* Our method integrates Bayesian inference with a sparse prior to build interpretable
chemistry user models.

* The Bayesian method outperforms the Lasso logistic regression and the sparse neural
network in predicting user responses.

* The Bayesian method’s interpretable feature importances are the closest to user-written
descriptions.



Future work:
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alignment with .

expert reasoning

* Users provide feedback on the
importance of the features selected
in explaining their preferences

* Feedback on feature importance
directly influences the user model’s
learning process

* The feedback will adjust model
predictions to reflect which
features align with expert
reasoning

Active Learning
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Future work: enhanced alignment with expert reasoning

The user can give feedback about the selected features m
* Prior over their weights: Wim ~ ¥jm N(O, A]Z,m) + (1 — yj,m)SO,
where y;, ~ Ber(pj),
and pj~ Beta(af,ﬁjp)
» User feedback a feature importance:
Zim ~ yjimBer(nj) + (1 — yj,m)Ber(l — nj)
where m; ~ Beta(a;', 5}

* Joint posterior:

p(6;1Y,2;) < I1,p(Y; | wdp(Z; | v}, 7)) (W | A4, v)) p(¥j | P}) P(P)P(T))
where 9] = {W,Alz,y], p], Tl']}

liris Sundin, Tomi Peltola et al., Improving genomics-based predictions for precision medicine through active elicitation of expert
26 knowledge, Bioinformatics,Volume 34, Issue 13, July 2018, Pages i395-i403,


https://doi.org/10.1093/bioinformatics/bty257
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Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove
it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the

contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus,
Cambridge, CB2 OAA, UK, T: +44(0)203 749 5000, www.astrazeneca.com
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