

Leveraging quantum mechanical properties to predict solvent effects on large drug-like molecules

Mathias Hilfiker^{1,2}

Leonardo Medrano Sandonas³, Marco Klähn², Ola Engkvist², and Alexandre Tkathcenko¹

mathias.hilfiker@astrazeneca.com, leonardo.medrano@tu-dresden.de

¹ Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.

² Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden

³ Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany.

The water dilemma

All the reactions that are interesting for pharmaceutical purposes happen in acqueous environments

- Hydrogen bonding
- Van der Waals forces
- Structural reorganization

Describing solvation accurately is crucial for drug discovery

Source: Grossman, M., Born, B., Heyden, M. *et al.* Nat Struct Mol Biol **18**, 1102–1108 (2011).

Explicit treatment

Implicit treatment

Adopting an implicit approach allows to reduce the required computations

Comprehevnesive knoweldge of solvent effects is still lacking

Gaining general insights into the effect of solvation on structure/property and property/property relations for large drug-like molecules

Source: Wacławek, Stanisław. Ecological Chemistry and Engineering S, vol.28, no.1, 2021, pp.11-28.

Aquamarine (AQM) dataset^[1]

Dataset of QM properties for large drug-like molecules

^[1] Medrano Sandonas, L. et al. Scientific Data 11.1 (2024): 742.

Aquamarine (AQM) dataset[1]

^[1] Medrano Sandonas, L. et al. Scientific Data 11.1 (2024): 742.

Aquamarine (AQM)

Dataset	Total structures	Total molecules	Max. total atoms	Max. heavy atoms	Elements	Geometry level of theory	Solvent model	Property level of theory	Solvent model	Total DFT properties
QMugs ³⁸	1,992,984	665,911	228	100	10	GFN2-xTB		ωB97X-D/def2-SVP	1-	19
OE6239	30,876	30,876	174	92	16	PBE(tight)+TS	_	PBE0(tight)	MPE	3
BACE ⁴⁰	455,000	534	115	61	9	r2scan-3c/mTZVPP	C-PCM	r2scan-3c/mTZVPP	C-PCM	6
Amino acids ⁴¹	1,300	26	96	39	5	Amber14 FF	explicit	ωB97M-D3(BJ) /def2-TZVPPD	-	10
AQM-gas	59,786	1,653	92	54	8	DFTB3+MBD		PBE0(tight)+MBD		36
AQM-sol	59,786	1,653	92	54	8	DFTB3+MBD	GBSA	PBE0(tight)+MBD	MPB	40

Table 1. Main characteristics of current quantum-mechanical datasets of large-sized molecular systems. We have selected datasets where molecule-solvent and/or van der Waals interactions have been considered during their generation procedure. The BACE and Amino acids sets have been extracted from the GEOM and SPICE collections.

Comparison with QM7-X^[2]

	QM7-X	AQM
Number of molecules:	40k	60k
Heavy atoms:	C,N,O,S,CI	C,N,O,S,CI,F,P
Number of properties	42	36 (40)
Chemical environment	No	Implicit water
Level of theory	PBE0+MBD	PBE0+MBD

Key advancements:

- Exaustive selection of conformers;
- Large number of properties;
- Inclusion of long range interactions;
- Availability in both vacuum and water.

^[2] Hoja, J. et al. *Scientific data* 8.1 (2021): 43.

Correlation analysis: size effect

The property space of QM7-X is caracterized by a lack of correlations^[3] ("Freedom of design") QM7-XDoes that sill hold true for large, solvated molecules? AQM_{gas}

Moderately correlated couples:

Strongly correlated couples: 5

18

8

[3] Medrano Sandonas, L. et al. *Chemical Science* 14.39 (2023): 10702-10717.

Correlation analysis: solvent effect

Moderately correlated couples: 18

Strongly correlated couples: 8

Mathias Hilfiker 19/09/2024 6/14

Correlation analysis: conclusions

- Properties are generally weakly correlated: "Freedom of design"retrieved
- Molecular size affects the correlation structure of the property space
 - The acqueous environment affects the values of properties, but not the correlations between them

Strong correlation

Energy analysis

How does solvation affect the distribution of conformers in the energy landscape?

$$E_{range,mol} = E_{max,mol} - E_{min,mol}$$

Conformers are compressed in a smaller energetic window in solvated phase

Solvation leads to a degeneration of energy levels

Structure-property relationship

How does the structural variation upon solvation affect properties?

Δ-learning of solvent effects

Geometry in gas phase

Equivariant Neural Network(s)^{[4][5]}

[4]: MACE (Batatia, I. et al. *Advances in Neural Information Processing Systems* 35 (2022): 11423-11436.)

[5]: Allegro (Musaelian, A. et al. Nature Communications 14.1 (2023): 579.)

Δ-learning of solvated properties: dipole moment

Δ-learning obtains less dispersed predictions

Δ-learning of solvated properties: dipole moment

Δ-learning shows lower error and better scalability than direct learning

Δ-learning of solvated properties: dipole moment

Δ-learning shows lower error and better scalability than direct learning

Δ-learning of solvated properties: Dispersion energy

Δ-learning achieves lower errors

Van der Waals interactions are ineherently long-range: 6Å cutoff is not enough!

Conclusions

Existing datasets can provide valuable insights into the effects that water has on large drug-like molecules

Δ-learning shows a way to predict solvated phase properties from gas-phase molecules

Mathias Hilfiker 19/09/2024 13/14

<u>Acknowledgements</u>

TCP group

Dr. Leonardo Medrano Sandonas

Prof. Dr. Alexander Tkatchenko

AstraZeneca:

- Dr. Ola Engkvist
- Dr. Marco Klähn

AIDD consortium

