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The water dilemma

All the reactions that are interesting for pharmaceutical
purposes happen in acqueous environments

L i ) :
T A Hydrogen bonding * VVan der Waals forces e Structural reorganization

Explicit treatment Implicit treatment

Source: Grossman, M., Born, B., Heyden, M. et
al. Nat Struct Mol Biol 18, 1102-1108 (2011).

Adopting an implicit approach
allows to reduce the required
computations

Gaining general insights into the
effect of solvation on

structure/property and
property/property relations for

Comprehevnesive knoweldge large drug-like molecules

of solvent effects Is still lacking

Source: Wactawek, Stanistaw. Ecological Chemistry and Engineering S, vol.28, no.1, 2021, pp.11-28.
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Aguamarine (AQM) dataset!!!

Dataset of QM properties for large drug-like molecules
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Drug-like molecules
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Aguamarine (AQM) dataset!!!

Dataset of QM properties for large drug-like molecules
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total(2687)
* selected(728)

59,786
structures

1,653

unique composition




Aquamarine (AQM)

Total Total Max. total Max. heavy Geometry Solvent Property Solvent  Total DFT

Dataset Elements :
structures molecules atoms atoms level of theory model level of theory model  properties
QMugs‘-‘R 1,992,984 665,911 228 100 10 GFN2-xTB —  @B97X-D/def2-SVP - 19
OE62" 30,876 30,876 174 92 16 PBE(tight)+TS — PBEO(tight) MPE 3
BACE* 455,000 534 115 61 9 r2scan-3¢/mTZVPP C-PCM  r2scan-3¢/mTZVPP C-PCM 6
;‘;;3‘,’ 1,300 26 96 39 5 Amberld FF  explicit dc‘g%‘;ﬁm ) - 10
AQM-gas 59,786 1,653 92 54 8 DFTB3+MBD - PBEO(tight)+MBD - 36
AQM-sol 59,786 1,653 92 54 8 DFTB3+MBD GBSA PBEO(tight)+MBD MPB 40

Table 1. Main characteristics of current quantum-mechanical datasets of large-sized molecular systems. We have selected

datasets where molecule-solvent and/or van der Waals interactions have been considered during their generation procedure.

The BACE and Amino acids sets have been extracted from the GEOM and SPICE collections.

Comparison with QM7-X!?l

QM7-X AQM
Number of molecules: 40k 60k
Heavy atoms: C,N,0,S,Cl C,N,0,S,ClF,P
Number of properties 42 36 (40)
Chemical environment No Implicit water
Level of theory PBEO+MBD PBEO+MBD

2l Hoja, J. et al. Scientific data 8.1 (2021): 43.
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Key advancements:

* Exaustive selection of
conformers;

* Large number of properties,

* Inclusion of long range
Interactions;

* Availablility in both vacuum and
water.

AQM-gas
AQM-sol
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Correlation analysis: size effect

The property space of QM7-X is caracterized by a lack of correlations®! (“Freedom of design”)
OM7 — X Does that sill hold true for large, solvated molecules? AQM s
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Pearson's correlation coefficient

Moderately correlated couples: 8 18

Strongly correlated couples: 5 8

3l Medrano Sandonas, L. et al. Chemical Science 14.39 (2023): 10702-10717.
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Correlation analysis: solvent effect

AQMgas AQMgsy,
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Moderately correlated couples: 18 17

Strongly correlated couples: 38 9
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Correlation analysis: conclusions

. AQMSOI

* Properties are generally weakly correlated: "Freedom
of design’retrieved

* Molecular size affects the correlation structure of the

B AQMgs property space
QM7-X

Counts

* The acqueous environment affects the values of
properties, but not the correlations between them
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Energy analysis

How does solvation affect the distribution of conformers in the energy landscape?

Erange,mol — Emax,mol o Emin,mol
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Conformers are compressed in a smaller energetic
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Solvation leads to a degeneration of energy levels




Structure-property relationsnip

How does the structural variation upon solvation affect properties?
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Freedom of design also in the A-space =2
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A-learning of solvent effects

Geometry optimization Property calculation
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A-learning of solvated properties: dipole moment
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A-learning obtains less dispersed predictions
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A-learning of solvated properties: dipole moment
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A-learning shows lower error and better scalability than direct learning
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A-learning of solvated properties: dipole moment
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A-learning shows lower error and better scalability than direct learning
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A-learning of solvated properties: Dispersion
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Van der Waals interactions are ineherently long-range: 6A cutoff is not enough!
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Conclusions

Existing datasets can provide valuable insights into the effects that water has on large drug-like molecules

Solvation does not alter the correlations Correlations between properties may be transferable to
between properties the solvated phase

Solvation causes a degeneracy of energy Necessity of a more rigourous molecular description for

a— . .
levels machine learning models
Structural and property variations are Machine learning models should take into
uncorrelated consideration the electronic features

A-learning shows a way to predict solvated phase properties from gas-phase molecules
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