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Explainability for molecules - challenges

Common deep learning strategies

Input type

Explanations

/ SMILES based networks \

* Attributions are assigned to all input
features

* Attributions for structural characters are
hard to interpret and visualize

Cclcec(C)c(c2cec(F)cc2Cl)cl-
CICCC(F)ccICTl

e XAl outputs restrict to attributions for
atoms, neglecting input information

/ Graph Neural Networks

* Molecules are represented as graphs
* Atoms - Nodes
* Bonds = Edges

4 =

» Attributions are assigned to input
features, which are atoms

* Measure of how a given atom contribute
positevily/negatively to the prediction
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Challenges

1.

2.

3.

Lack of global explainability
»  Methods are forced to express explanation in terms of input

quantities
»  This exludes more advanced concepts related to global
structures (rings, etc.)

Lack of symmetry
»  Often the symmetry of a molecule is explicitly broken by the

input modality (e.g., SMILES)
>  This is reflected in the XAl attributions

Lack of sparsity

»  Often explanations are cluttering and therefore less informative
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Models from CDDD space

CDDD
learned
descriptors

l

QSAR models » Chemical properties

SMILES Canonical SMILES

——

C(Nclnc(nc(NC(C)C)n1)SC)(C)C

SMILES attributions
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Winter et al., “Learning Continuous and Data-Driven Molecular Descriptors by Translating Equivalent Chemical Representations”, Chem. Sci., 2019



Generating SMILES attributions
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ZB l n: vocabulary size

Attributions for each atom

Cclccec(O)cl

=N
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Zhao et al. ,Modeling bioconcentration factors in fish with explainable deep learning”, Artificial Intelligence in the Life Sciences Pllzer 2024 | Publi



Img2Mol

T
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CDDD

Img2MolEncoder learned
descriptors

|

Encoder trained to map images

embeddings to their corresponding
CDDDs.

CDDD Decoder

Loss = (cdddpye — cdddpreq)?

Clevert et al.,, 2021, Img2Mol — Accurate SMILES recognition from Molecular Graphical Depictions, Chemical Science, 2022

Canonical SMILES
C(Nc1nc(nc(NC(C)C)n1)SC)(C)C
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Model use case

SMILES —_— m—»

512 descriptors ———p
1 Dense
Hidden layer 1
1000 nodes
l Dense
Hidden layer 2
50 nodes

logD logBCF

Decoder

—p Canonical SMILES
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Overall concept

Input Image

QL

L

512 CDDD
descriptors

|

Neural > Predicted value
network

Pfizer 2024 | Public



Img2mol learns local and global concepts
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/ 14 space
Conv. Block # 2 Downstream
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Conv. Block # 1

: : Ring and structure
Edge detectors Node detectors Layer activations detectors
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/ 4 * Deeper layers learn more advanced
* Shallow layers learn simple geometric geometric features, e.g., rings
features, e.g., edges and nodes Conv. Block #1 Conv. Block #2 Conv. Block #3 * Such layers also learn high level
* These also correspond to basic chemical concepts, which translate to
concepts chemical substructures
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Local and global explanations

STRATEGY

1 = 1. Explain downstream prediction (logD)
LogD wp E‘P A
e ® =Img2Mol cA: M — M, 5 C =R
Conv. Block # 3 cDbDD fetion
space
Conv. Block 2 FC Blask PFebloak | 2. Compute attributions for each convolutional layer
o)
. z a(é‘p,cp © A)(x)
Conv. Block # 1 a,p(x) = %Z=l m X T,bp,cp (X)
| J
1 Gradients restricted at layer | Activation restricted at layer |
\ |
1
Layer attributions Measure of importance contribution of layer-learned features to the prediction
¢ P (Y ¢t (g = "
a. H J <@ ¢ /{ e i R V” e %\A C &)< ) Negative contribution Positive contribution to
Y ] e L e Y o N to the prediction the prediction

v

network’s depth
3. Aggregate over layers

Iayerlaggregation a(X) = Z ajg (X)

l
»  Automatic weighting between layers’ contribution
2~ »  No need to ad-hoc restrict to local or global features
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Examples

Atomic “local” explanations

Ring “structural” explanation
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Invariance with respect to symmetries

SYMMETRY SCORE

« Let T be the symmetry group of a molecule’s graphical depiction
« x,T(x) correspond to same molecule for all 1" € T

Example: Rotations

< 1
x —— a(x) 5@/

TJ/ lT

T(x) ——— d T
*  Symmetry score 101 urdnsiormatorn |

1 ~ '~ \ 4
sr(x) = SJAT() ~ T@RO) .

e Aisnormalized between [-1,1] ALY T'{'}gj?_.\\ a

s7(x)=0 <« al'=Ta
@Pﬁzer
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Molecule symmetries: reflection
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Depiction’s symmetries

T:x! R(30) x

Sr(30) = 0.143

&y

Sr(30°) = 0.095

(o) t‘\\ .
'J' ;

Sr(30°) = 0.195
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Ground truth — benzene task

/ Examples \
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Correlation with SMILES explanations

/ Examples \

s
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Thank you for your
attention!
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