

Artificial Intelligence Methods for Evaluating Mitochondrial Dysfunction

Exploring Various Chemical Notations Suitable for Neural Language Processing Models

ICANN

The 33rd International Conference on Artificial Neural Networks.

A conference of the European Neural Network Society

Cardiovascular diseases

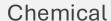
A Cardiovascular
disease is a
multifactorial
disease that involves
a combination of
genetic,
environmental, and
lifestyle factors.

Each cardiovascular disease has a different set of risk factors and mechanisms of development.

As a result,
accurately
predicting the onset
or progression of
cardiovascular
diseases in humans
can be challenging.

In-silico methods: Quantitative Structure-Activity Relationship (QSAR)

With QSAR is possible to predict the biological activity of a compound based on its chemical structure and other related properties



Chemicals are **encoded** in a suitable way for modeling.

MODEL

Math Function

Biological Activity

Machine learning (ML) models to predict interaction with biological targets

Descripto

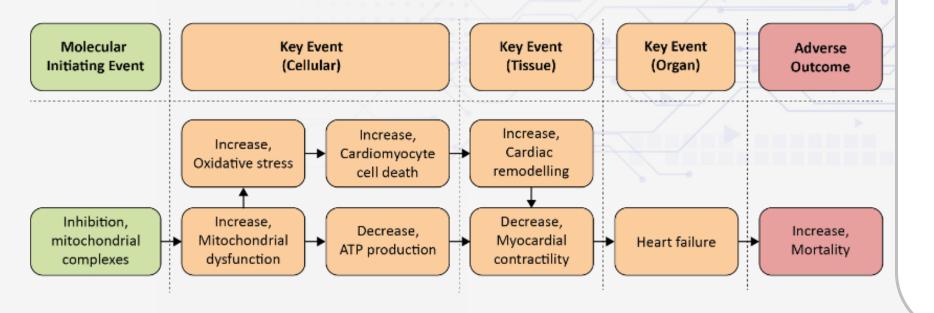
Structure

Biological targets identified based on the **AOPs** for cardiotoxicity

Adverse Outcome Pathway (AOP): Mitochondrial Dysfunction

AOP framework highlights possible endpoints related to cardiotoxicity effects for modeling perspective:

- 1. Structural effects
- 2. Contractile effects
- 3. Electrophysiological effects



ASSAYS Mitochondrial Dysfunction

APR_HepG2_MitoMass_24h_dn
APR_HepG2_MitoMass_24h_up
APR_HepG2_MitoMass_72h_dn
APR_HepG2_MitoMass_72h_up
APR_HepG2_MitoMembPot_24h_dn
APR_HepG2_MitoMembPot_24h_up
APR_HepG2_MitoMembPot_72h_dn
APR_HepG2_MitoMembPot_72h_dn
APR_HepG2_MitoMembPot_72h_up
ATG_XTT_Cytotoxicity_up
TOX21_MMP_ratio_down
TOX21_MMP_ratio_up

TOX21 MMP rhodamine

Results of Data Collection and Data Curation

Only data that passed **Quality Control (QC)** was maintained in our dataset

A chemical is classified as active if it yields a positive result in at least one assay

Standard SMILES canonization, removed salts and duplicate structures.

	Total Chemicals	Training set	Validation set	Holdout set
All	5004	4052	451	501
Active	1147	929	103	115
Inactive	3857	3123	348	386

Baseline Machine Learning: state of the art for Mitochondrial Dysfunction

Machine Learning			Descriptors	Data Numerosity	References					
methods	Balanced Accuracy	Precision	Sensitivity	Specificity	MCC	F1-Score		External Validation		
Gradient Boosting	0.708	0.573	0.467	0.948	0.454	0.515	Atom Pair FP	893	DOI: 10.1002/min f.202000005	
Random Forrest	0.743	0.279	0.793	0.692	0.338	0.413	RDKIT mol.desc.	893	DOI: 10.1002/min f.202000005	
Neural Network	-	0.45	0.68	0.88	0.48	0.54	CDDD	761	DOI: 10.1021/acs .chemrestox.3c0 0086	
Extreme GB	0.742	0.650	0.600	0.883	0.485	0.602	CDDD	1001	DOI:https://doi.or g/10.3390/toxics1 2010087	

ENCODING CHEMICAL INFORMATION

There are many different ways to encode chemical information, meaning that chemical properties can be represented in various forms suitable for machine learning. But which method is the best?

Machine Learning Models

SVC

Logistic Regression

Decision Tree

Random Forest

KNN

GaussianNB

Artificial Intelligence: Deep Learning

GCNN

Deep Neural Network

Multitask Models

Multimodal Models

NLP Methods For Molecular Property Prediction

NLP methods offer a data-driven and computationally efficient approach to toxicological screening.

search learn think

New model developed in-house with a custom architecture

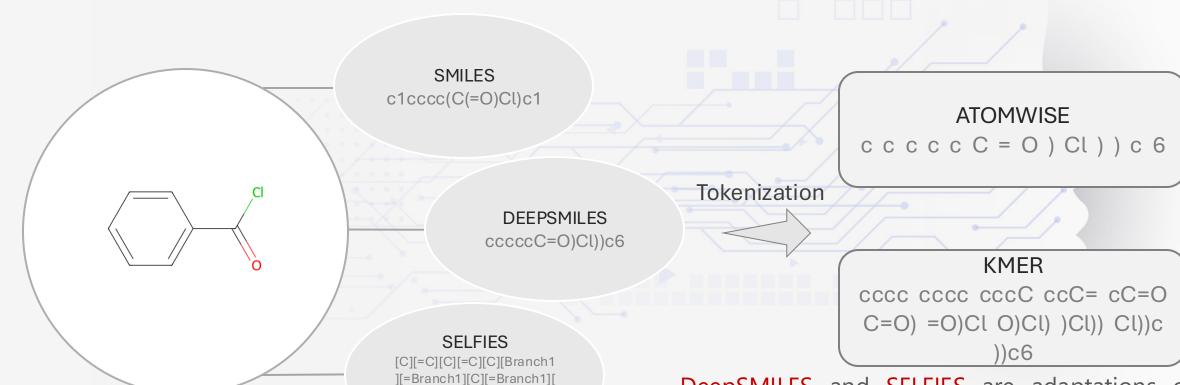
NLP models learn the chemical **grammar** and **semantics** of chemical notation.

Large-Scale Self-Supervised Pretraining for Molecular Property Prediction models:

ChemBERTa, RoBERTa.

Chemical Notations

The Simplified Molecular Input Line Entry System (SMILES) is a widely used chemical notation system that represents the structure of molecules as a linear string of characters.



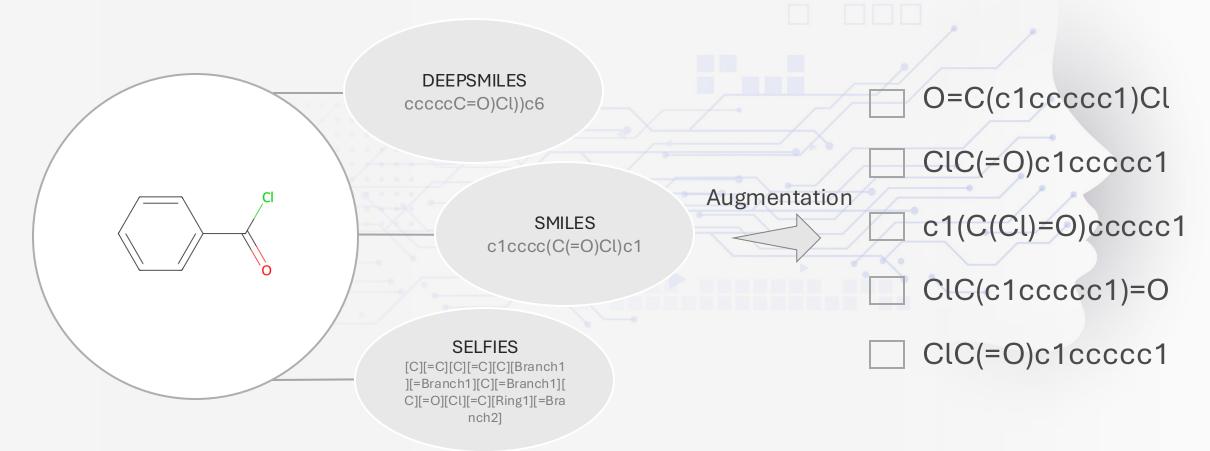
C][=O][Cl][=C][Ring1][=Bra

nch2]

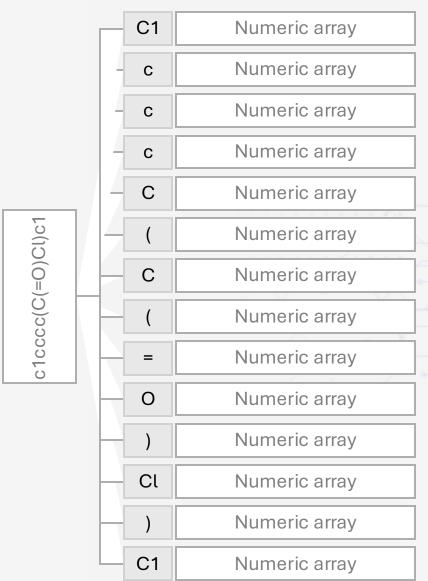
DeepSMILES and SELFIES are adaptations of SMILES designed to address some of the issues related to using character strings to represent chemicals in machine learning.

SMILES Augmentation

Multiple SMILES represent the same molecule. This feature about chemical notation is explored as a technique for data augmentation of a molecular QSAR dataset.



Character Embedding and Model Architecture



Layer (type)	Output Shape	Param #
Input Layer	[(None, 1)]	0
Text Vectorization	(None, 54)	0
Embedding	(None, 54, 128)	2091776
Conv1D	(None, 54, 128)	328192
Conv1D	(None, 54, 64)	655616
Bidirectional	(None, 54, 64)	394240
Bidirectional	(None, 54, 32)	123648
GlobalMaxPooling1D	(None, 128)	0
Dense	(None, 128)	16512
Batch Normalization	(None, 128)	512
Dropout	(None, 128)	0
Dense	(None, 128)	1056
Batch Normalization	(None, 128)	128
Dropout	(None, 128)	0
Dense	(None, 64)	528
Dense	(None, 1)	17

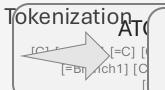
 $\begin{array}{c} {\rm Tot.\ param:\ 2303081\ (8.79\ MB)} \\ {\rm Trainable\ params:\ 2302953\ (8.79\ MB)} \\ {\rm Non-trainable\ params:\ 128\ (512.00\ Byte)} \end{array}$

Results

			I	Holdout	Set			Validation		
	Notation	BA	Prec	Sens	Spec	$\overline{\mathbf{MCC}}$	F1-Score	F1-Score	Tokenizer	AUG
	SMILES atomwise	0.766	0.660	0.625	0.906	0.542	0.642	0.744	atomwise	no
2	AUG SMILES atomwise	0.810	0.552	(0.812)	0.808	0.550	0.657	0.803	atomwise	yes
	SMILES kmer	0.747	0.536	0.661	0.834	0.461	0.592	0.857	kmer	no
	AUG SMILES kmer	0.761	0.717	0.589	0.932	0.561	0.647	0.613	kmer	yes
	DeepSMILES atomwise	0.785	0.557	0.741	0.829	0.519	0.636	0.731	atomwise	no
	AUG DeepSMILES atomwise	0.764	0.503	0.741	0.787	0.469	0.599	0.745	atomwise	yes
	DeepSMILES kmer	0.764	0.503	0.741	0.787	0.469	0.599	0.822	kmer	no
	AUG DeepSMILES kmer	0.742	0.503	0.679	0.805	0.439	0.578	0.757	$_{ m kmer}$	yes
1	SELFIES atomwise	0.775	0.707	0.625	0.924	0.575	0.664	0.688	atomwise	no
	AUG SELFIES atomwise	0.749	0.605	0.616	0.883	0.495	0.611	0.887	atomwise	yes
	SELFIES kmer	0.715	0.438	0.688	0.742	0.375	0.535	0.812	kmer	no
	AUG SELFIES kmer	0.738	0.551	0.625	0.851	0.456	0.586	0.613	kmer	yes

Augrentestion [C][=C][C][=C][C][Branch1 anch1][nch2]

c1(C(Cl)=O)cccc1 ClC(c1ccccc1)=O ClC(=O)c1ccccc1 ClC(=O)c1ccccc1



ATOMWISE

c 1 c c c c (C (= O) Cl) c 1

Conclusions

- Previous works suggest to us that NLP are very promising approaches to predict mitochondrial dysfunction.
- We tested different approaches to encode chemical structures as strings of characters (SMILES, SELFIES, DEEPSMILES) and explored various tokenization methods (Atomwise, KMER).
- These methods outperform the machine learning models' capability to predict mitochondrial toxicity.

External Set	Best ML: XGB	Neural Network 1	Neural Network 2	Advanced AI Mechanistic (CDDD)	Advanced AI Multi-task NN	Advanced Al Multimodal	NLP	Ensemble (undersampled gradient boosting models)
MCC	0.49	0.48	0.53	0.54	0.56	0.56	0.58	0.61
Performance Comparison with NLP	+18.4%	+20.8%	+9.4%	+7.4%	+3.5%	+3.5%	-	-4.9%
Reference	DOI:https://doi.org/ 10.3390/toxics1201 0087	DOI: 10.1021/acs.c hemrestox.3c00086	DOI: 10.1002/minf. 202000005	DOI: 10.1021/acs.c hemrestox.3c00086	DOI: 10.1021/acs.c hemrestox.3c00086	10.3390/toxics1201 0087	-	https://doi.org/10.1 016/j.comtox.2021. 100189

Next steps

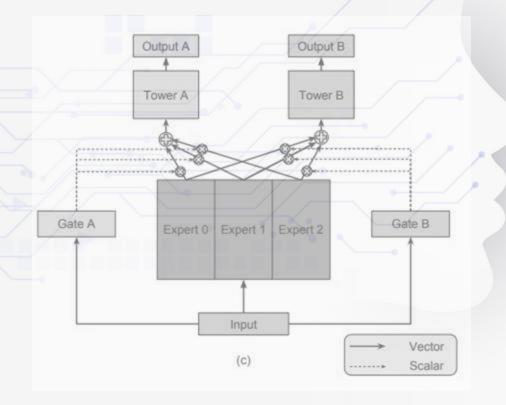
1. Fine tuning Large-Scale Self-Supervised Pretraining for Molecular Property Prediction

- ChemBERTa is Large-Scale Self-Supervised Pretraining with 12 attention heads and 6 layers, resulting in 72 distinct attention mechanisms
- Fine-tuning this type of model, which is trained on millions of SMILES, could help to better generalize chemical assessments

Next steps

2. Explore Multitask methods to expanded the coverage for predicting possible toxic interaction between chemicals and biological target that bring to cardiotoxicity

		N° compounds	Active %
	Cardiomyocyte Myocardial Injury	5320	29
SL	Change Action Potential	415	27
Mode Of Actions	Change in Inotropy	922	23
de Of	Change In Vasoactivity	4969	20
Š	Endothelial Injury Coagulation	5634	43
	Valvular Injury Proliferation	268	34
Apical Cardiotoxicity	Clinical Data	848	73
ıts	hERG inhibition	8462	51
Key Events	KE1 Increased Oxidative Stress	636	30
<u>Ř</u>	KE2 Increased Mitochondrial Dysfunction	5004	23



ACKNOWLEDGEMENTS AND DISCLAIMER

 This work has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101037090, project ALTERNATIVE.

 This presentation reflects the author's view, only, and the Commission is not responsible for any use that may be made of the information provided.

Thanks for your attention!

