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Combinatorial Chemistry

3 x 3 Building Blocks 9 Products

Combinatorial chemistry involves reaction of some or all combinations of diverse reagents according to a 
common synthetic scheme:

Goodnow et al. A handbook for DNA-encoded chemistry: theory and applications for exploring chemical space and drug discovery, John Wiley & Sons, 2014. 1



Combinatorial explosion problem

Abundance of commercial building blocks allows to create ultra-large combinatorial compound libraries

https://enamine.net/building-blocks/building-blocks-catalog, acessed 16.09.2024

300K In-stock 
Building blocks 

at

2



Combinatorial explosion problem

Abundance of commercial building blocks allows to create ultra-large combinatorial compound libraries

https://enamine.net/building-blocks/building-blocks-catalog, acessed 16.09.2024

Primary 
amines
33 196

Acids
33 162

300K In-stock 
Building blocks 

at

2



Combinatorial explosion problem

Abundance of commercial building blocks allows to create ultra-large combinatorial compound libraries

https://enamine.net/building-blocks/building-blocks-catalog, acessed 16.09.2024

Primary 
amines
33 196

Acids
33 162

33 162
Acids

33 196
Primary 
Amines

1 100 845 752

Enumerated 
products

Combinatorial 
Explosion

300K In-stock 
Building blocks 

at

2



Potential of combinatorial libraries

1 100 845 752

Enumerated 
products

Fast exploration of previously uncharted chemical space

Advantages:

∼ 1012 compounds can be synthesized

Fast experiments

DNA-encoding allows to screen all compounds at once
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Analysis of Combinatorial Libraries

1 100 845 752

Enumerated 
products

Chemical space map

Interpretable navigation of the chemical space of a combinatorial library using dimensionality reduction  

  

 

  

 

  

 

D1

D2

Dn

Representation in the 
N-dimensional 

descriptor space

Dimensionality
reduction

4



Generative Topographic Mapping

GTM density landscape

D2

D3

D2

Projection of data points 
& manifold unbending 

Responsibility

0.1
0.02
0.003

N-dimensional 
descriptor space

Manifold adapts its 
form to the data

D1 D1

D3

1 100 845 752

Enumerated 
products

✓ Intuitive navigation
✓ Fast comparison to other libraries
✓ Big Data compatibility
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Workflow of combinatorial library analysis

1. Enumeration

2. Standardization

4. Dimensionality reduction

Rxn 11

Rxn 25

Rxn 18

Building blocks: Reactions:

3. Descriptor calculation
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4. Dimensionality reduction

1. Enumeration

2. Standardization

Building blocks: Reactions:

3. Descriptor calculation

How to predict the map directly from building blocks and reactions?
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Rxn 11

Rxn 25

Rxn 18

Chemical space map

Workflow of combinatorial library analysis



CoLiNN – Neural Network for combinatorial library analysis without 
compound enumeration

Combinatorial Library Neural Network 
(CoLiNN)

CoLiNN skips the enumeration step, making the process of combinatorial library visualization faster and simpler

Building blocks: Reactions:
Generative Topographic Map of 

the combinatorial library
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1. Building Block Embedding Creation 2. Reaction Embedding Creation 

3. Responsibility vector prediction

CoLiNN – Neural Network for combinatorial library analysis without 
compound enumeration
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Rxn 11

Rxn 25

Rxn 18

Reactions:

𝑥′ = 𝑥𝑊𝑇 + 𝑏

Reaction ids
Building blocks:

BB
graphs

1. Building Block Embedding Creation 2. Reaction Embedding Creation 

3. Responsibility vector prediction

CoLiNN – Neural Network for combinatorial library analysis without 
compound enumeration
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Molecule vectorBuilding blocks:

Reactions:

Reactions:

𝑥′ = 𝑥𝑊𝑇 + 𝑏

Reaction ids

1. Building Block Embedding Creation 2. Reaction Embedding Creation 

3. Responsibility vector prediction

Rxn 11

Rxn 25

Rxn 18

CoLiNN – Neural Network for combinatorial library analysis without 
compound enumeration

Building blocks:

BB
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Molecule vectorBuilding blocks:

Reactions:

Reactions:

𝑥′ = 𝑥𝑊𝑇 + 𝑏

Reaction ids

1. Building Block Embedding Creation 2. Reaction Embedding Creation 

3. Responsibility vector prediction

Predicted responsibility vector 

Target responsibility vector 

Kullback Leibler divergence =  0.7

Loss:

0 – perfect match
∞ - worst case scenario

Rxn 11

Rxn 25

Rxn 18

CoLiNN – Neural Network for combinatorial library analysis without 
compound enumeration

Building blocks:

BB
graphs
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Training set for general-chemistry sensitive CoLiNN model

3M 880K compounds
Training time: 13 h

Validation KL div. loss: 0.79

Training set : 388 DELs

A general CoLiNN model was trained on 388 DELs based on diverse reaction schemes:

…

 

  

 

  
   

 

Input to CoLiNN: Target Resp. Vector:

… ……
Optimal training time & 

performance:

General CoLiNN

Reaction ids, BB graphs

Reaction ids, BB graphs
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Reaction ids

Predicted responsibility vector 

VS

Physical time needed for prediction:

7000-fold acceleration
compared to traditional 

workflow

CoLiNN – Gain in time

0.055 ms/molecule/GPU

1. Enumeration

2. Standardization

4. Projection on the map

3. Descriptor calculation

395 ms/molecule/CPU
Responsibility vector 

Building Block SMILES

CoLiNN

Input:

Traditional workflow:
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Predictions for test set DELs

Tanimoto coeff. (𝑡𝑟𝑢𝑒/
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

Similarity between predicted and true maps of 2089 
DELs from the external test set:

For the majority of test set DELs the predicted maps 
are nearly identical to the true ones

GTM CoLiNN
DEL3827

DEL3234

0.85

0.92

Tanimoto coeff. : 
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Conclusions
1. CoLiNN predicts compound projections on the GTM using only their building blocks and reactions, 

skipping the compound enumeration

2. The predicted maps for external test set DELs are very similar to the true GTM-derived ones

3. CoLiNN achieves 7000-fold acceleration compared to the enumeration-based workflow

Rxn 1

Rxn 2

Rxn 3

• Different reaction representation 

• Prediction of molecular properties without structure enumeration

Perspectives

7000-fold faster

SMIRKS / Reaction SMARTS / CGR

12



Thank you for your attention!
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Atom feature 
vectors:

Adjacency matrix

Atom embeddingsBuilding Block (BB)

N – Number of atoms (nodes)
D – Vector dimension

Sum

BB 
embedding

What happens in the GCN Layer for one node:

𝑥′ = 𝑥𝑊𝑇 + 𝑏

Message passing

xW

Update
Application 
of act. func.

During CoLiNN training we save BB graphs and later we save BB embeddings that will be further used for inference

BB graphs’ and embeddings’ creation



GTM CoLiNNDEL117

0.07

DEL3878

Tanimoto coeff. (𝑡𝑟𝑢𝑒/𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

Similarity between predicted and true maps of 2089 
DELs from the external test set:

For some DELs predictions are of low quality

0.56

Predictions for test set DELs

Tanimoto coeff. : 

36Pikalyova R., T. Akhmetshin et al., et al. ChemRxiv (2024).



• CoLiNN is coupled with 5 Graph Convolution Network 
layers where GELU (Gaussian Linear Unit) is used as an 
activation function

• GELU is used instead of original ReLU since it is more 
smooth than ReLU and is differentiable at every point 
leading to the improved gradient flow during 
backpropagation and decrease in the number of dead 
neurons (that do not contribute to learning)

GELU Activation function



• Reduces the amount of GPU memory required 
to store the model as well as training time 
without loss of accuracy.

•  Instead of three or four bond- type-specific 
adjacency matrices and specific trainable 
weight matrices (necessary for relational 
GCNs that leads to too much memory + 
numerous math. operations) the number of 
hydrogens attached to each heavy atom is 
used instead of bond order. 

• By using H atom numbers instead of bond 
orders, functional groups standardization and 
aromatization steps can be omitted. 

• A molecular graph can be represented by three objects: 1) a vector of atom types, 2) a vector of the numbers 
of attached hydrogens, and 3) a single binary adjacency matrix.

• The number of hydrogens attached to each heavy atom is used instead of bond order. 

Hydrogen-count labelled graph 

Advantages:

Akhmetshin T, et al. HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder. ChemRxiv. 2021; doi:10.26434/chemrxiv-2021-18x0d



Why Graph Representation for a molecule?

• Intuitive and Natural Representation: Molecules are inherently graph-like structures, where atoms are nodes 
and bonds are edges.

• Independent of atom ordering: Unlike some other methods, such as SMILES strings, which require a specific 
ordering of atoms, graph representations are independent of the atom's ordering.

• Handling Cyclic Structures: Graph representations naturally accommodate rings and cyclic structures without 
additional complexity, while some string-based methods (e.g., SMILES) require special notations to represent these 
features.

• Scalability for Larger Molecules: Graph representations scale well for larger, more complex molecules, like 
proteins or polymers, where other methods might become cumbersome.

• Efficient Storage of Structural Data: While not the most compact representation, molecular graphs balance 
between efficiency and detail, preserving essential structural features without requiring massive data storage.

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016 Aug;30(8):595-608. 



Direct Application to Graph Structures: GCNs work directly on molecular graphs, preserving the structure of 
atoms and bonds. Traditional neural networks expect vectorized inputs, which requires converting molecular 
structures into fixed-length feature vectors (like fingerprints), often leading to loss of structural information.

Local Neighborhood Aggregation: GCNs aggregate information from neighboring atoms, capturing chemical 
context about atom’s environment.

Automatic Feature Learning: GCNs automatically learn relevant molecular features without manual feature 
engineering.

Scalability: GCNs scale well to large molecular datasets and complex structures like proteins or polymers.

Adaptability to Various Tasks: GCNs can be applied to various tasks such as property prediction, reaction 
outcomes, and drug-target interaction.

Effective in Low-Data Regimes: GCNs perform well even with limited data, making them useful in areas with 
sparse datasets.

Improved Performance Over Traditional Methods: GCNs often outperform traditional machine learning 
methods like random forests or SVMs.

Why GCN?

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016 Aug;30(8):595-608. 

Fout, Alex, et al. "Protein interface prediction using graph convolutional networks." Advances in neural information processing systems 30 (2017).
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Results: Predicted maps allow to correctly rank DELs by similarity to ChEMBL

VS

DELs

Ranking of DEL maps predicted by CoLiNN with respect to their 
similarity to ChEMBL correlate with the true ranking

Task:



Reaction SMARTS/SMIRKS/CGR



DNA-Encoded Library (DEL)

DNA-Encoded Library is a combinatorial collection of small molecules covalently attached to the DNA tag

Library Size =(Purple BBs) x (Blue BBs)

DNA tag 
2

DNA tag 
1

Building block 2

Building block 1

DNA-Encoded 
Library

Images: Halford, B. Chem. Eng. News 2017, 95, 28.
Images taken from biorender.com 3



Images: Halford, B. Chem. Eng. News 2017, 95, 28.
Images taken from biorender.com

Target protein

DNA-Encoded
Library

DNA-Encoded Library (DEL) screening

Identification through
DNA-sequencing

Structures of active 
compounds  identified

Isolation of compounds 
that bind to the target

protein
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Primer PrimerCode 3 Code 2 Code 1

DNA-tagging

7-15 base pairs long BB 1 BB 2 BB 3

Primers

DNA sequences that initiate the Polymerase Chain Reaction 
essential for the compound identification step

Code 1

DNA sequences identifying different building blocks (BBs) 
that make up a molecule

Code 2

Code 3
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