### IMPERIAL

# Scaffold Splits Overestimate Virtual Screening Performance

Qianrong Guo, Saiveth Hernandez-Hernandez, Pedro Ballester

Department of Bioengineering, Imperial College London, UK





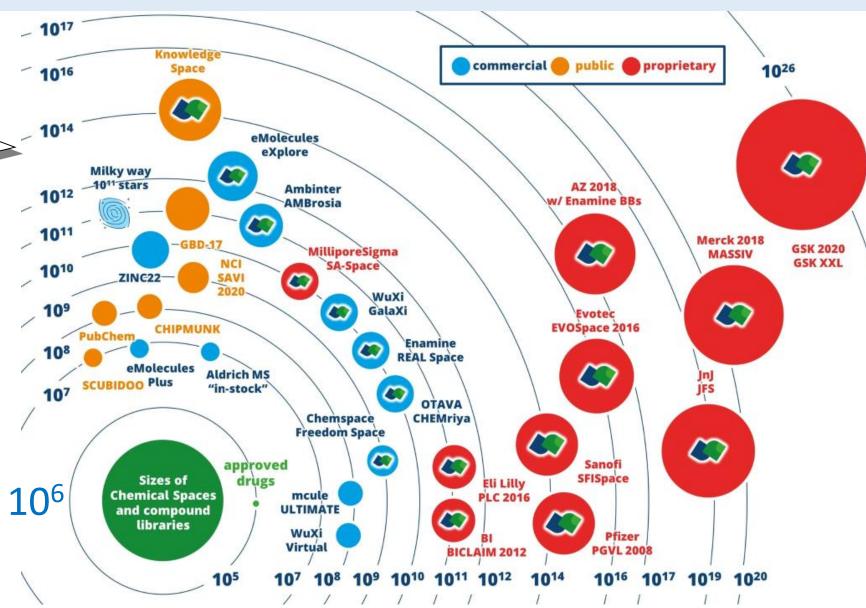




# Virtual Screening (VS): predicting dissimilar molecules

Almost every molecule to predict will be dissimilar to any in training set molecule

# activity-labelled molecules that can be used for developing VS methods: at most



Source: https://www.biosolveit.de/chemical-spaces/

### Also needed for other Molecular Property Prediction (MPP)

MPP is a rebranding of ligand-based QSAR/QSPR and structure-based BAP mostly

Their (unverified) claim: MPP models working well on the benchmark will also work well prospectively

### MoleculeNet benchmarks

| Category              | Dataset       | Data Type              | Task Type      | # Tasks | # Compounds | Rec - Split <sup>a</sup> | Rec - Metric <sup>b</sup> |
|-----------------------|---------------|------------------------|----------------|---------|-------------|--------------------------|---------------------------|
| Quantum<br>Mechanics  | QM7           | SMILES, 3D coordinates | Regression     | 1       | 7160        | Stratified               | MAE                       |
|                       | QM7b          | 3D coordinates         | Regression     | 14      | 7210        | Random                   | MAE                       |
|                       | QM8           | SMILES, 3D coordinates | Regression     | 12      | 21786       | Random                   | MAE                       |
|                       | QM9           | SMILES, 3D coordinates | Regression     | 12      | 133885      | Random                   | MAE                       |
| Physical<br>Chemistry | ESOL          | SMILES                 | Regression     | 1       | 1128        | Random                   | RMSE                      |
|                       | FreeSolv      | SMILES                 | Regression     | 1       | 642         | Random                   | RMSE                      |
|                       | Lipophilicity | SMILES                 | Regression     | 1       | 4200        | Random                   | RMSE /                    |
| Biophysics            | PCBA          | SMILES                 | Classification | 128     | 437929      | Random                   | PRC-AUC                   |
|                       | MUV           | SMILES                 | Classification | 17      | 93087       | Random                   | PRC-AUC                   |
|                       | HIV           | SMILES                 | Classification | 1       | 41127       | Scaffold                 | ROC-AUC 0.8               |
|                       | PDBbind       | SMILES, 3D coordinates | Regression     | 1       | 11908       | Time                     | RMSE                      |
|                       | BACE          | SMILES                 | Classification | 1       | 1513        | Scaffold                 | ROC-AUC 0.                |
| Physiology            | BBBP          | SMILES                 | Classification | 1       | 2039        | Scaffold                 | ROC-AUC 0.9               |
|                       | Tox21         | SMILES                 | Classification | 12      | 7831        | Random                   | ROC-AUC                   |
|                       | ToxCast       | SMILES                 | Classification | 617     | 8575        | Random                   | ROC-AUC                   |
|                       | SIDER         | SMILES                 | Classification | 27      | 1427        | Random                   | ROC-AUC                   |
|                       | ClinTox       | SMILES                 | Classification | 2       | 1478        | Random                   | ROC-AUC                   |

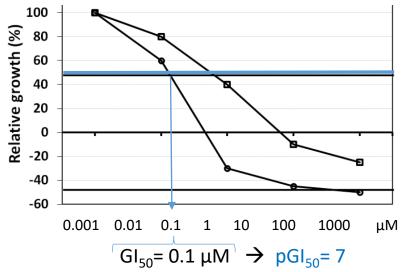
Scaffold split to evaluate on dissimilar molecules, i.e. to generate two sets with different biases (a.k.a. distribution shift)

Near perfect classification!

Source: <a href="https://moleculenet.org/">https://moleculenet.org/</a>

### Scaffold splits of the NCI-60 datasets

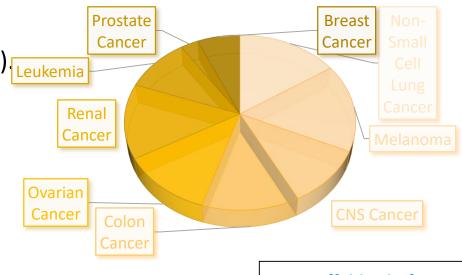
**GI**<sub>50</sub>: molecule concentration inducing 50% inhibition of cancer cell line growth.



#### Employed NCI-60 datasets:

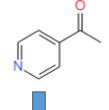
- 60 cell lines (9 cancer types), Leukemia
- 33,118 unique molecules.
- 1,764,938 pGl<sub>50</sub> measurements (88.8% of this bioactivity matrix)

### NIH NATIONAL CANCER INSTITUTE



#### Bemis-Murcko scaffold:

core structure of a molecule by removing its side chain atoms and focusing on its central ring systems and linkers.



33,118 molecules



14,212 scaffolds

Fold 1: 2031s, 4366m

Fold 2: 2031s, 4405m

Fold 3: 2030s, 5865m

Fold 4: 2030s, 4586m

Fold 5: 2030s, 4993m

Fold 6: 2030s, 4532m

Fold 7: 2030s, 4371m

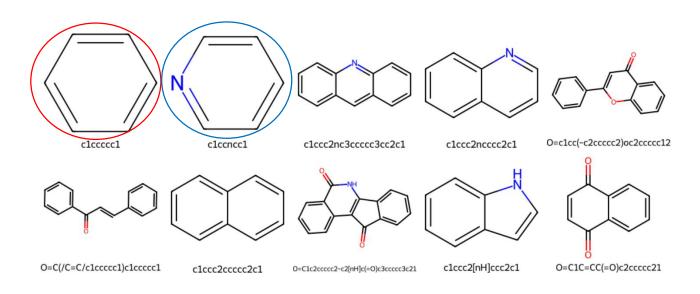
Fold 1: 4366m
Fold 2: 4405m
Fold 3: 5865m
Test set
Training set
Fold 5: 4993m
Fold 6: 4532m
Fold 7: 4371m

https://dtp.cancer.gov/discovery\_development/nci-60/cell\_list.htm

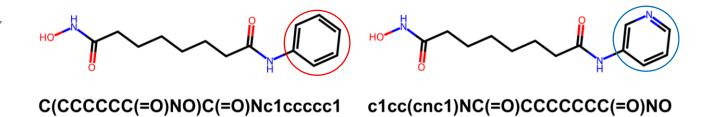
# Scaffold split: unrealistically high train-test similarities!

Top 10 most-frequent scaffolds among molecules tested on TK-10 (a renal cancer cell line)

Scaffold split will often permit high similarities between training and test molecules (scaffolds different in a single atom, one scaffold containing the other) that rarely occur prospectively (massive diversity of screening libraries used as real-world test set)

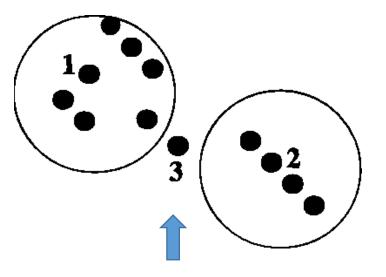


Scaffold split can place the molecule on the left in the training set and that on the right in the test set!



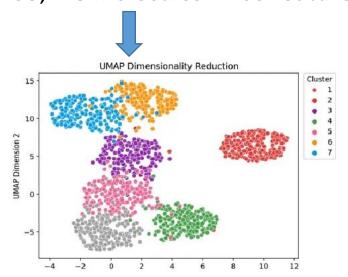
# **Butina and UMAP clustering splits**

Butina clustering: centroids are selected as the molecules with more neighbours. Then each cluster is formed with molecules with similarity > cutoff=0.9 (found optimal) to its centroid.



33,118 molecules x 263 features

UMAP clustering: UMAP learns the manifold structure of the data in a topology-preserving manner assuming k clusters. Here outputs a two-dimensional embedding. K= 7 was optimal.



#### Butina clustering split:

- 7 folds as UMAP and scaffold.
- Butina clusters distributed across folds by their decreasing size (same-size folds)

#### UMAP clustering split:

7 folds, fold = UMAP cluster

Butina: https://pubs.acs.org/doi/full/10.1021/ci9803381

UMAP: https://www.mdpi.com/2218-273X/13/3/498

# Linear Regression (LR) and Random Forest (RF)

#### **Features**

RDKit

263 pre-calculated features **X** per molecule:

- 256 binary (MorganFpt, 256 bits, radius 2)
- 7 real-valued (physico-chemical)

Package

AllChem.GetMorganFingerprintAsBitVect rdMolDescriptors.CalcTPSA rdMolDescriptors.CalcExactMolWt rdMolDescriptors.CalcCrippenDescriptors rdMolDescriptors.CalcNumAliphaticRings rdMolDescriptors.CalcNumAromaticRings rdMolDescriptors.CalcNumHBA rdMolDescriptors.CalcNumHBD Function

Generate the Morgan Fingerprints [9] for the molecules.

Calculate the area of the total polar surface.

Calculate the molecular weight.

Calculate the Crippen-Wildman partition coefficient (logP) parameters [10].

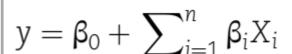
The number of aliphatic rings.

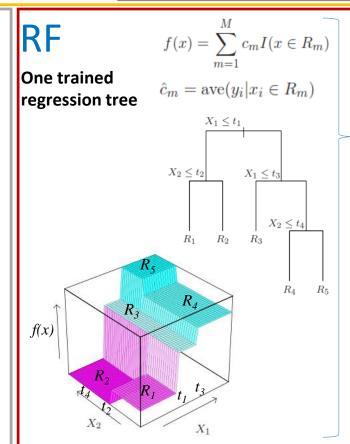
The number of aromatic rings.

The number of hydrogen bond acceptors.

The number of hydrongen bond doner.

LR





#### **Random Forest of regression trees**

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
  - (a) Draw a bootstrap sample  $\mathbf{Z}^*$  of size N from the training data.
  - (b) Grow a random-forest tree  $T_b$  to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size  $n_{min}$  is reached.
    - i. Select m variables at random from the p variables.
    - ii. Pick the best variable/split-point among the m.
    - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees  $\{T_b\}_1^B$ .

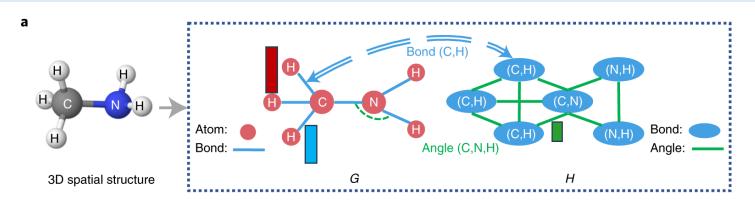
To make a prediction at a new point x:

Regression:  $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$ .

Classification: Let  $\hat{C}_b(x)$  be the class prediction of the bth random-forest tree. Then  $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$ .

Source: https://www.statlearning.com/

#### Geometry-Enhanced molecular representation learning Method (GEM)



Each molecule, two node-edge graphs:
G (atom-bond) and H (bond-angle)

| , | Feature type | Feature             | Description                                                    |     |
|---|--------------|---------------------|----------------------------------------------------------------|-----|
|   |              | atom type           | type of atom (e.g., C, N, O), by atomic number (one-hot)       | 119 |
|   |              | aromaticity         | whether the atom is part of an aromatic system (one-hot)       | 2   |
|   |              | formal charge       | electrical charge (one-hot)                                    | 16  |
|   | atom         | chirality tag       | CW, CCW, unspecified or other (ont-hot)                        | 4   |
|   | •            | degree              | number of covalent bonds (one-hot)                             | 11  |
|   |              | number of hydrogens | number of bonded hydrogen atoms (one-hot)                      | 9   |
|   |              | hybridization       | sp, sp $^2$ , sp $^3$ , sp $^3$ d, or sp $^3$ d $^2$ (one-hot) | 5   |
|   |              | bond dir            | begin dash, begin wedge, etc. (one-hot)                        | 7   |
|   | 1            | bond type           | single, double, triple or aromatic (one-hot)                   | 4   |
|   | bond         | in ring             | whether the bond is part of a ring (one-hot)                   | 2   |
|   | •            | bond length         | bond length (float)                                            | -   |
|   | bond angle   | bond angle          | bond angle (float)                                             |     |

Input features for atoms, bonds and bond angles

# **GEM** pretraining and training

**GEM pretraining** by the authors using the 3D conformers of 20 million unlabelled molecules from ZINC15

Pretrained GEM fine-tuning by us using the same labelled training sets as LR or RF

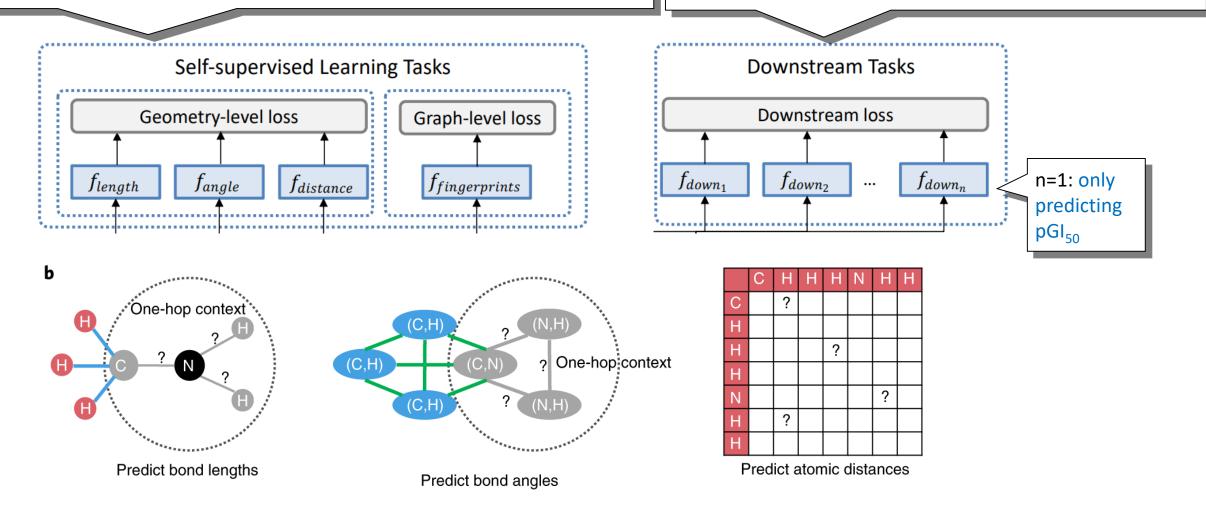
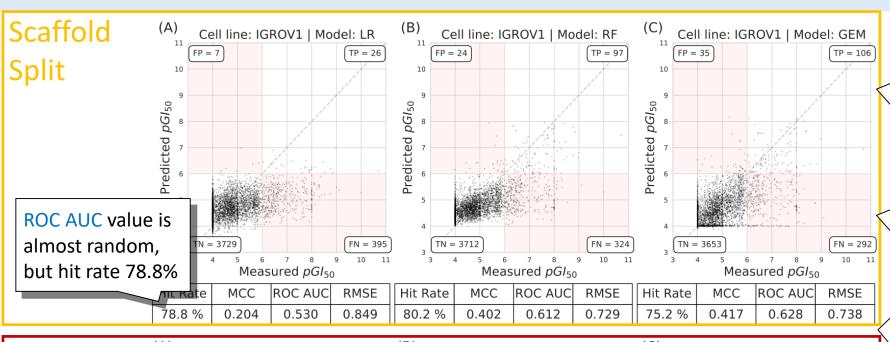


Figure Source: Fang X, Liu L, Lei J, et al. Geometry-enhanced molecular representation learning for property prediction. *Nature Machine Intelligence*, 2022, 4(2): 127-134.

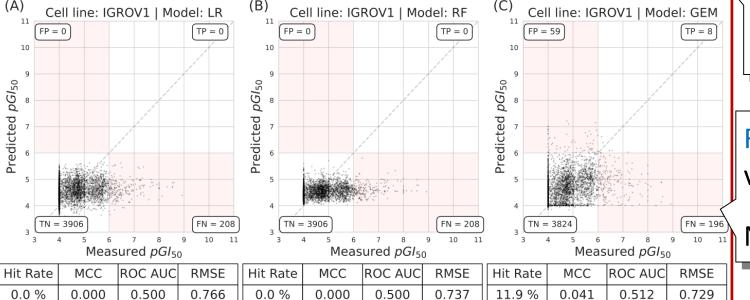
# Results: 1 left-out fold x 1 CL x 1 seed x 3 algorithms



regression-classification evaluation: active if pGI<sub>50</sub>>6

Highest hit rate 80.2% → RF selected for prospective use

UMAP Split

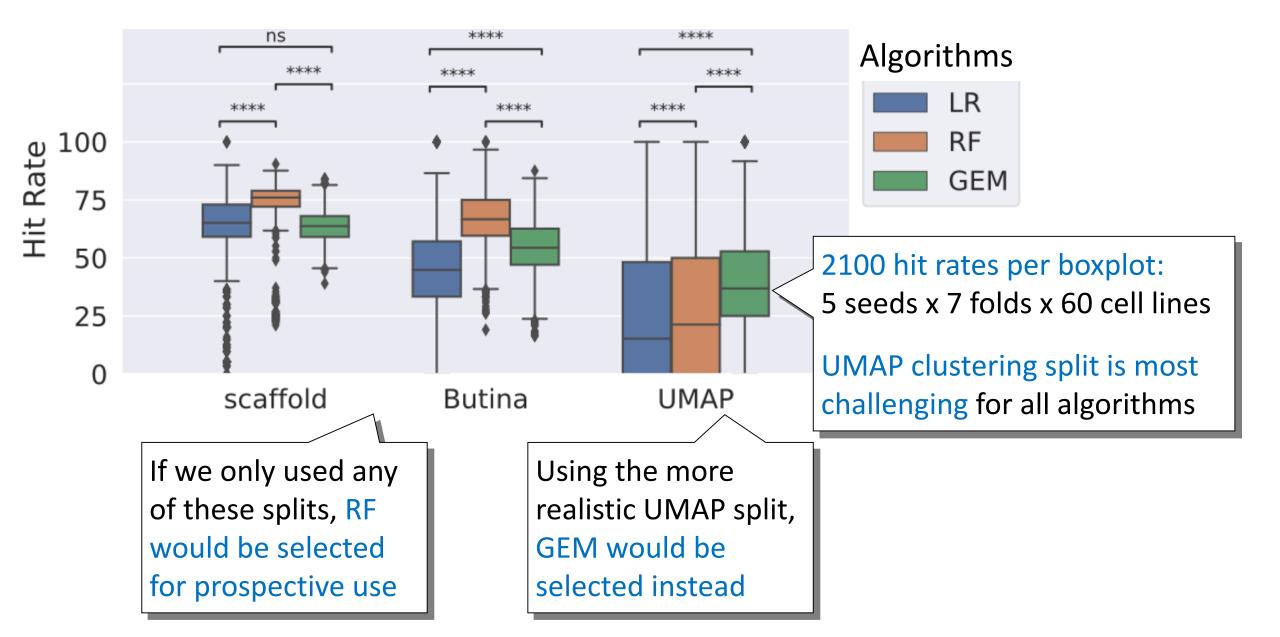


RMSE is not helpful either: e.g. LR SS (0.849) vs UMAP (0.766) but hit rate LR SS (78.8%) vs UMAP (0%)

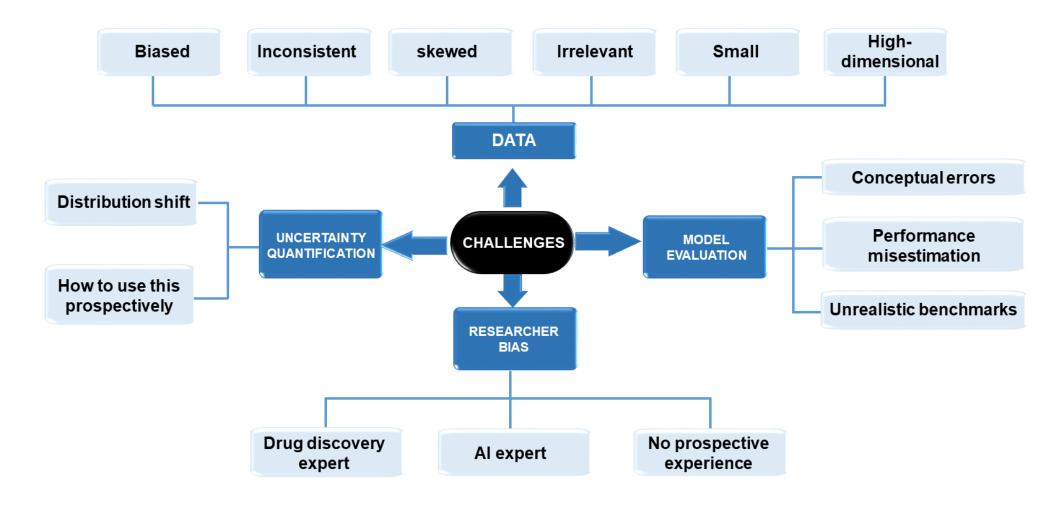
RF now a 0% hit rate! (LR too) vs GEM stills finding actives

NB: GEM **TP** in each split

# Hit rate in left-out fold: 3 algorithms x 60 cell lines



# Biased datasets: far from being the only MPP challenge



Ghislat et al. (2024) "Data-centric challenges with the application and adoption of artificial intelligence for drug discovery" *Expert Opinion on Drug Discovery*. <a href="https://arxiv.org/abs/2407.05150">https://arxiv.org/abs/2407.05150</a>

### Conclusions

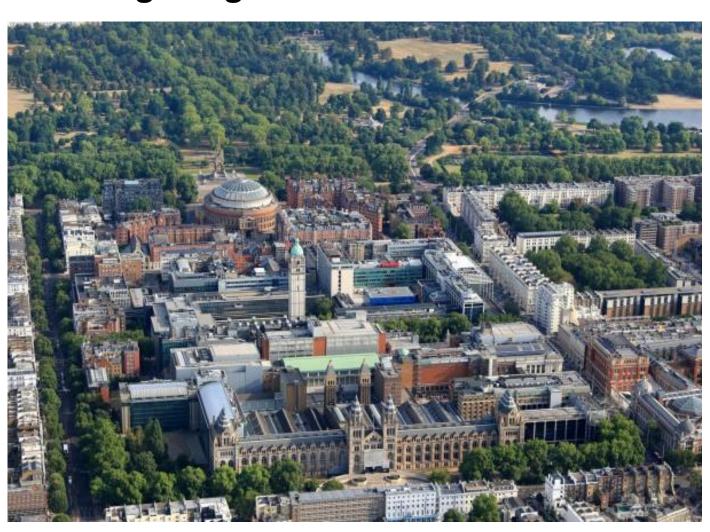
- 1. Scaffold splits do not generate realistic distribution shifts because similar molecules often have different scaffolds
- 2. Clustering splits ensure lower similarities between training and test molecules → more challenging than scaffold splits
- 3. UMAP clustering splits are substantially harder than Butina clustering splits for all the supervised learning algorithms
- 4. As training-test similarities do not depend on the label to predict, scaffold splits are also likely to distort model selection in similar molecular property prediction problems

## Do you know anyone looking for a postdoc in this area?

Postdoc1 on AI for structure-based virtual screening Postdoc2 on generative AI for de novo drug design

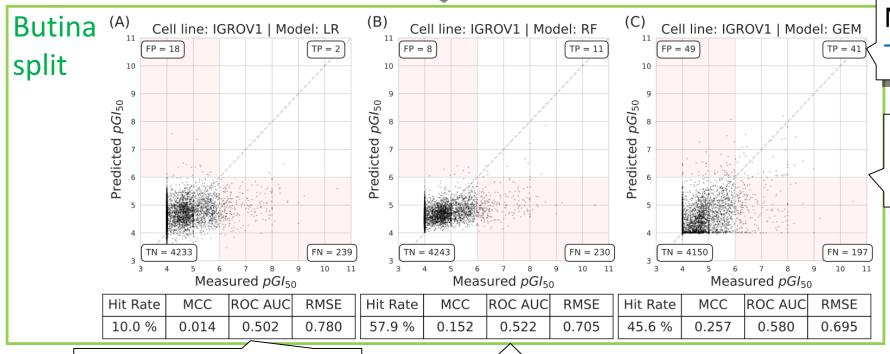
If interested, please email me <a href="mailto:p.ballester@imperial.ac.uk">p.ballester@imperial.ac.uk</a> with a CV with publications and a motivation letter.

Q & A



# Results: 1 left-out fold x 1 CL x 1 seed x 3 algorithms

Highest hit rate 57.9% → RF selected for prospective use



NB: GEM highest TP in each split

regression-classification evaluation: active if pGl<sub>50</sub>>6

RMSE also useless: e.g.

RF SS (0.849) vs Butina (0.780)

but hit rate

RF SS (78.8%) vs Butina (10%)

ROC AUC useless: almost random, but hit rate 57.9%