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Overview

 Part 1:
— Recap on Deep Learning and multi-layer perceptrons

- Intro to Geometric Deep Learning and Graph Neural
Networks (GNNSs)

- General applications

* Part 2:
— EGNNSs for binding site identification
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Graph neural networks and chemistry

* Graph neural networks (GNN) are a versatile technique in
cheminformatics and computer-aided drug discovery (CADD)

- Bioactivity and property prediction and QSAR
- Forward- and retrosynthesis prediction

- Molecular encoders: encode a molecule as a vector of
features

- Basis for generative models
- Representation learning tasks on macromolecules
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Graph neural networks and chemistry

* WARNING!

Graphs are only one
possible representation of
molecules

- Some ML researchers
falsely think that the
molecular graph is the
“correct” representation
WRONG!

- Some ML researchers
think that GNNs are the
“correct” way to do
learning tasks on
molecules — WRONG!

* BUT:. GNNs are very
versatile...

J z U JOHANNES KEPLER
UNIVERSITY LINZ

8 Electronic dens ty W

I\ L/ Voe¥
W

2 SMILES

| C1=002=C(C=CIS(=0)(=0)0)C(-0)C3=C(C2-0)C=CC(=C3)S(=0)(=0)0

3 Poten




Recap: Deep Learning and Multi-layer
Perceptrons (MLPs)
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Notation, Deep Learning and
Empirical Risk Minimization

 We have access to a labeled dataset
{(x® yM), .. (™) 4Py}

* A model function with adjustable parameter®

A

Y = g(z; w)

* We will adapt the paramete]rvs to minimize the empirical risk
1
Remp(w) = — 221 L(y™, g(x™; w))
n—

e Using gradient descent

w eV = ’lUOld — vaRemp(w)”wold
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Structure of a deep neural network
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DNNs: notation

e z: input for layer 0; equivalent to al’
e W: weight matrix connecting layer [ — 1 and layer [

e sll: pre-activations of layer I

]

e alll: activations of layer

e f: activation function that is applied element-wise to a vector.
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DNNSs: Forward pass

* Activations from one layer to the next layer:

alll = f(s[l]) — f(W[l]a[l—l])
e Full function:
g = g(x; W WEDY = oW pw B rowltlie)y )

* With bias units
alll = f(s[l]) — f(W[l]a[l—l] 4 b“]).

J z JOHANNES KEPLER
UNIVERSITY LINZ 11



Why non-linearities?

* With non-linearity:

gla; Wil oWl =Wt fwlEwle)) . )

* Without non-linearity:

gx; Wl wlh = oWt willl )

~

=W
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A note on activation functions

LReLU(x)
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A note on activation functions:
derivatives
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Forward pass
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Backpropagation in DNNs

* Without loss of generality, we derive with
respect to a weight in the first layer:

9, OL(y,y) Oy Osl! os!l]
Wl (L)) — ) .. L.
.0 L(y, g(x; W .., WIH)) 5 9alll " Bl B
’ :q:rA g =B \_.’(ji/

 Now we treat the expressions A, B and C.
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Backpropagation in DNNs

 \We first define:

st . 9Ly, 9)
| dsll]
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Backpropagation in DNNs

* Without loss of generality, we derive with
respect to a weight in the first layer:

9, OL(y,y) Oy Osl! os!l]
Wl (L)) — ) .. L.
.0 L(y, g(x; W .., WIH)) 5 9alll " Bl B
’ :q:rA g =B \_.’(ji/

 Now we treat the expressions A, B and C.
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Backpropagation in DNNs

* Without loss of generality, we derive with
respect to a weight in the first layer:

%, OL(y,9) 0F osl! ds!l]

Wl (L]} — ) L L
w[l']L(’y,g(a?, W ooy W) o9 0sl T gsi-1 T I
! ~a =B ——

=:C

e A %255 Depends on the choice of loss
function and activation. If canonical links
are chosen, this can result in

5 = (g —y)"
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Backpropagation in DNNs

* Without loss of generality, we derive with
respect to a weight in the first layer:

%, OL(y,y) Oy osl! ds!l]
[L])) — . L.
[1] L(y, g(x; w il , W) = 9y 9slEl T asil oo
?;j [ ="\:'A _ j?/ 1]
=i
* B 2 sl = wll f(sli=1)y
sl

T = Wl diag (f’(s“—”))
S
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Backpropagation in DNNs

* Without loss of generality, we derive with
respect to a weight in the first layer:

s, OL(y,y) 0y dsll] Oslll

v vdtl [L]}) — : : : : :
w[l] L(y?g(ij )-.-,W )) 8yA aS[L] .« e 88“—1] . e 8w[1]
3J N ~ y; T 7
- o =:C
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Backpropagation in DNNs

* Without loss of generality, we derive with respect
to a weight in the first layer:

3\ 89 1 1]
%L(y,g(w;W“],---,W[”))= 2y a%;L] 8511 asm
wj; . Jdy Os ; 0s Ow;,
(o) ™ =
e C 0 pmge o
Coowl owlY NN
1) ] :
\ 0/
0] . .
where the non-zero entry ag- lis at the ;-th
position.
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Backpropagation in DNNs

e Overall we find

OL(y,9) _ OL(y,y) s _ (611), (al-1),
ul] 0T ou]

or conveniently:

aL(ya g) [
= Sl

1—1]"
oW |

a
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Summary of backprop

» Calculate deltas at output units §'%!

* Backpropagate deltas through network
using

5[l—1] _ 8L(y7’g) as[l]
osll  9sli—1]

J/

_5U]W dlag( - 11))

* Calculate weight update 7

AW = sl (gli=11)T
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The vanishing gradient problem

e We know from above:

sI-1 = sl wll giag (f/(S[Z—l])) _ sl gl

\ - J/
~"

J

* Thus we have: ||JY|| <k <1

2
Jo)| = o [ a9 < k18 = 8t~ 0
[=L
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output layer
hidden layer 3
hidden layer 2
hidden layer 1
inpu
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Online, stochastic and batch training

* Online learning/training: single sample from training set is propagated
through network and then a parameter update is performed.

w"V = w°ld — NV w Remp (Y, T, W) |pola

* Full-batch learning/training: all samples from training set are propagated
through network and then a parameter update is performed.

W™ = w°' — NV Romp (Y, X, W)] ol

* Stochastic learning/training: a small subset of samples from the training set
are propagetd through network and then a parameter update is performed

W™ = W' — NV Remp (Y, X, W)|yo1a
Approx. the full-batch gradient with a random subsample (“mini batch”):

VauwRemp(y, X, w) ZV L(y"™, g(x™, w) ZV " w))

n=1
J z U JOHANNES KEPLER
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Deep feed-forward neural networks

* Same principle as MLPs
- Layers of interconnected neurons
- More layers; more neurons
- Different activation functions

Table 1: Comparison of typical multi-layer perceptrons and deep feed-forward
neural networks (informal guidelines).

MLP DNN
Number of hidden layers 1 or few > 1 up to several hundreds
Number of neurons per layer < 10 > 100
Activation function tanh, sigmoid ReLU, SELU

J z JOHANNES KEPLER
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Geometric Deep Learning
and GNNs

29



Currently two streams in ML

less inductive biases,
more data,

learn equivariances and
invariances from data

Vision
transformer,
MLPMixer,
ConvNext,
CLIP, ...

J z U JOHANNES KEPLER
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GEOMETRIC DL

ore inductive biases,
less data,
build equivariances and
invariances into
architectures

Graph neural
networks,
Message-passing
networks,
spherical CNN
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Geometric Deep Learning

* Attempt at a unified
view on Deep
Learning
architectures

- From the
perspective of
symmetry
properties

e Comparison to
different geometries
In mathematics

J z U JOHANNES KEPLER Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning:
UNIVERSITY LINZ going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.
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Inductive biases

* “Biases and initial knowledge are at the heart of the ability to
generalize beyond observed data’” — Tom Mitchell

* “No generalization without inductive bias” — Max Welling,
Amsterdam, April 20 2019

* Equip neural networks with biases that lead to models that
learn to generalize well

 What could be such properties?

J z U JOHANNES KEPLER Mitchell, T. M. (1980). The need for biases in learning generalizations (pp. 184-191). New Jersey:
UNIVERSITY LINZ Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ..
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Symmetries in computer vision tasks

@ EEEEEEE

IEEEEEEE EEE N

input image input
vector
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Symmetries in computer vision tasks

1Tttt 1111111

input image input
vector

* Must learn invariance from data

J z JOHANNES KEPLER
UNIVERSITY LINZ

34



Geometric priors, symmetries, and
invariances

* Intuitive: a symmetry of an object or system is a transformation that
leaves a certain property of said object or system unchanged or
Invariant.

* Geometric prior: knowledge about the structure of the object
* Transformations may be smooth, continuous, or discrete
* Everywhere in ML tasks

* Set of symmetries satisfies a number of properties
— Combination of symmetries
- Invertible

- In mathematics known as group

J z U JOHANNES KEPLER
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Symmetries and groups

 Letu and v be two symmetries
Groups. A group is a set (& along with a binary operation o : G x G — (& called composition
satisfying the following axioms:

m Associativity: (uovjoh =uo(voh)

m Identity: there exists a unique e € (v satisfyingecu =uwoe =wuforall u € G5,

m Inverse: For each u € (3 there is aunique inverse v~ ! € Gsuchthatuou ! =ulou = e,

If additionally, u o v = v o u, the group is called Abelian group.

 Example (computer vision): shifting an object on an image

J z JOHANNES KEPLER
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Invariance, invariant functions

Definition 2 A function g : X — ) is invariant with respect to G if g(u(x)) =
g(x), where u € G is an operation of the group G. In other words, the output
1s unaffected by the group action on the input.
* Invariances built in some Deep Learning operations
- We had already encountered some
* Max-pooling
* Mean-pooling
* Sum-pooling
- Could be extended to other invariances
* e.g. invariances to shifting objects

J z U JOHANNES KEPLER
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Geometric DL blueprint

* Not only CNNs fall under this blueprint!

Jz JOHANNES KEPLER
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Equivariance, equivariant function

Definition 3 A function g : X — Y s equivariant with respect to G if
g(u(x)) = ul(g(x)), where u € G is an operation of the group G. In other
words, the operation affects the input and output in the same way.

* Convolutional layers are shift-equivariant:

- If object is shifted, the resulting feature map activations are
also shifted

J z U JOHANNES KEPLER
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The 4G or 5G of Geometric DL

-_—

Grids Groups Graphs Geodesics & Gauges

e Structure of domain

e Particular invariances and equivariances for each domain

J ! JOHANNES KEPLER
UNIVERSITY LINZ
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Graph neural networks

* Main area of Geometric Deep Learning
graphs

- Graphs are very general;

* images could be understood as
graphs
- pixels are nodes, adjacent pixels
have a connection (edge)

 Time-series could be
understood as graphs
- Directed graph, time-point is node,
connected to next time-point
* Sets could be understood as
graphs
- Element of set is a node, all
elements of set are connected

* No canonical order of nodes

J z JOHANNES KEPLER
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node feature x;
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Graphs: ML description

Adjacency Feature
matrix nXxXn matrix nXxd

X

Note: Notation for graphs

Note that there are different notations for graphs. Often the mathematical notation in
terms of sets of nodes and edges is used (see Subsection 16.3.2). In machine learning,
another notation is frequently used: a node ¢ has the initial representation = and all |

nodes together form X = {a,,... 2, ..., x'}. The edges are written in the adjacency
matrix A and so a single graph is a pair (X, A). A training set of graphs can be denoted
JOHANNES KEPLER : 1) A1) (n) Aln) (N) A(N)
J YU (RiVersiry Linz as {(X1, AW),.. (X, AW), . (X, AR}



Graphs: Math description

A graph G consist of a set of nodes (vertices) V and set of edges € C {{i,j} |
(i,7) € V* Ai # j}. Both nodes ¢ € V and edges {i,j} € E can have labels
(labelled graphs). We will use «; to denote a feature vector, or representation,
of the node ¢, and e;; to denote the feature vector, or representation, of the
edge {i,7}. The degree of a vertex of a graph deg(i) is the number of edges that
are incident to the vertex. For a simple graph with vertex set V, the adjacency
matriz is a square |V| x |V| matrix A such that its element A; ; is one when
there is an edge from vertex i to vertex j, and zero when there is no edge.
In the graph neural network methods, both nodes and edges can have hidden
represenations h; and h;;, respectively.

J z U JOHANNES KEPLER
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Machine learning on graphs

Input objects for a machine learning method
- E.g. social networks, molecules

- Node-level classification: label per node has to be predicted

* Example: social network; predict where a person likes to go
on holidays

— Graph-level classification: label per graph has to be predicted
* Example: drug discovery; predict whether a molecule is toxic
Desired invariances/equivariances
- Representation of graph nodes equivariant
- Prediction on whole graph: invariant to permutation of nodes

J z U JOHANNES KEPLER
UNIVERSITY LINZ
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Machine learning on graphs:
Message-passing framework

A

-
. (|

o <Z,©Af o
a

Representation Message Passing Update
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Machine learning on graphs:
Message-passing framework

OO00O0O

t—|—1 Z ¢ ht ht ew

GENG) mt+1
w(ht t—l—l)

J z JOHANNES KEPLER
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Message-passing neural networks

* Two main steps and two multi-layer perceptrons (MLP):

t+1 t .t . .
mi+ — Z Qb h h ez'j) message generation function
JEN() g
mﬁjl o(.,.,.) MLP
t+1 t t 1 .
hi_l_ — ¢(h " ) update function

Y(.,.) MLP
* 17, 7: Indices of nodes in a graph

t . : .
 h; :representation of node ¢ after t message passing phases

. h,? = @, . Initial representation are the node features (e.g. atom tyj

J z JOHANNES KEPLER
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JX

Read-out phase for graph-level

classification

Readout
function

3
j=R({hi,...,hy}) O
Permutation "
Invariant
Example:

JOHANNES KEPLER
UNIVERSITY LINZ
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E(n)-equivariant neural nets (EGNN)
Satorrasetal. [ conepen j

* Coordinate embeddings Xi
+ Node embeddings h!

 Message passing

m;; = Cb(hga h;, ||Xf - X§||27 eij)

* Properties: rotation-, and translation equivariance (layer) and
iInvariance (whole network); E(n) equivariant

J z JOHANNES KEPLER
UNIVERSITY LINZ
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Proof sketch of equivariance

* We first note that the messages are invariant under roto-
translations, Rx; +t Vi

mi; = ¢(hl, b’ ||Rx! +t — (Rx} +t)[|7, e55) = @d(hi, b, ||x; — xX[|°, ei;)

because |Rx|+t—[Rx) +t]||° = |Rx| — Rx[]*

= (x; —xj) ' R'R(x] — xj)
= (x; — x}) ' I(x; — x})
= ||x; — x|

* Then, we find by re-organizing the terms, that the coordinate

embeddings

Rx!+t+C ) (Rxl+t— (Rx|+t)pi(my)=...=Rx{"" +t
pF#Y

J z JOHANNES KEPLER
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Overview of MPNNs and their
associated groups

GNN |

Radial Field

TFN

Schnet

EGNN

m;; = ¢o(hl, hl, |Irh 112, a;j)

. ; i i : 1 I Lk 1 Lk I 1
Edge m;; = ¢e(h;, hjv aij) m;; = Qrf(”r;‘j”)ri_j m;; =3, W rjz'hz' mi; = lqi’Cr(”Pi_}‘H)(-‘b“(h.}‘} < L 4
m;; =r;;dg(m;;)
m; = e ar(s) Mij
Agg m; =3 .oy Mij m; = LMy m; = YR P m; = g MM ¢ JEN (i) 0t
gg i FEN(i) i i ZI??‘_—?’ 1] i Z.} Hi 1] 1 Zj;&; 1] m; = C Z_-j#i rh;;_.;-
141 . !
A 1 141 T B4, h;"" = ¢p h'-m)
Node h; "~ = ¢p(h;, m;) = x; + my h;"" =w"h; + m; h; " = ¢p(hj, m;) Y4 S
x;L. =X+ m;

Non-equivariant |

E (n)-Equivariant

SE(3)-Equivariant

E(n)-Invariant

E(n)-Equivariant

JX

JOHANNES KEPLER
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JX

Methods using the Graph Laplacian

Can also be formulated as message-passing neural networks
Reminder: adjacency matrix A (contains neighbourhood)
Degree matrix; 1) (contains degree of nodes, diagonal)
Graph Laplacian: L = I, — D 1/2AD—1/2

Kipf & Welling (2016):
message passing and node update in one

HA — 4 (D—l/ZAb—1/2HlWl)

Makes connection with transformers obvious

HT™ = A4 HW,
JOHANNES KEPLER N——

UNIVERSITY LINZ attention \ V4
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Analogy to convolutional networks and
transformers

Xa Xg e Xa .
-
C} Chb oy ph my, Mbb
\(h ) [N Lh 4 A
# JEETICLIN Y
Xp < Ci Xe - Xp % Qg X Xp ——m; v Xe
Yol et A e B
/ \ \“ ..... / \‘
Chd Che e > (X p < Ope <> Mpd < my,
X X, X, “Xe Xd Xe
Convolutional Attentional Message-passing

« Comparison of exchange of information in CNNs, Transformers, and
MPNNs

J z U JOHANNES KEPLER
UNIVERSITY LINZ
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Problems with learning MPNNs
(without much details; informal)

* Limited expressivity: limited ability to distinguish non-isomorpic
graphs (see later); -~ Weisfeiler-Lehman test

* Oversmoothing: representations of nodes become more and more
similar over message-passing steps

* Oversquashing: influence of one node on another node depends
decreases exponentially with length of shortest path
(something like the “vanishing gradient problem” for GNNS)

* Under-reaching: Information from one node is necessary for
correctly classifying another node, but there are insufficient
message passing steps to transfer the information

J z JOHANNES KEPLER
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Aggregation functions

* Up to now, we have used sum as aggregation function

mit' = % ¢(hl,h} e;)

JEN(J

* This is good for expressivity (see later), but

N N , N

>3 > =3
. nmiax
N “ 7=l _ /N <
J=1 7=l 7=1
mean aggregation (MEAN) max aggregation (MAX) sum aggregation (SUM) varlance-preserving aggregation (VPA)
X expressivity X expressivity expressivity expressivity
signal propagation signal propagation X signal propagation signal propagation

Schneckenreiter, L., Freinschlag, R., Sestak, F., Brandstetter, J., Klambauer, G., & Mayr, A. (2024).
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks. International

J ! JOHANNES KEPLER
Conference on Learning Representations (tiny papers track)

UNIVERSITY LINZ
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https://arxiv.org/abs/2403.04747

Problems with GNNs

* Limited ability to discriminate different graphs
- Aggregation function leads to problems (see Fig.)

* Graph isomorphism problem
- NP hard

 \Weisfeiler-Lehman test

T ¢ T g T T
A AR

(a) Mean and Max both fail (b) Max fails (¢) Mean and Max both fail
J z U JOHANNES KEPLER Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?.
UNIVERSITY LINZ arXiv preprint arXiv:1810.00826.
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Weisfeiler-Lehman test: necessary
condition for graph isomorphism

hash (.} E.;.S \:

}\asi\(., E.’.).S \;

J z JOHANNES KEPLER
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Geometric DL: a short overview

Architecture

CNN
Spherical CNN
Intrinsic | Mesh CNN

GNN
Deep Sets

Transformer

LSTM

J z JOHANNES KEPLER
UNIVERSITY LINZ

Domain 2
Grid

Sphere / SO(3)
Manifold

Graph
Set

Complete Graph
1D Grid

Symmetry group &

Translation
Rotation SO(3)

Isometry Iso(€2) /
Gauge symmetry SO(2)

Permutation >,
Permutation >,
Permutation 3.,

Time warping
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Applications

* Chemistry and Drug Design

* Protein biology: 3D conformations of proteins are point clouds; SE(3)
transformer (roto-translation invariant)

« Recommender Systems and social networks
» Traffic forecasting

* Object recognition

 Game computing

* Natural language processing

* Healthcare

» Particle physics and astrophysics
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Applications

a Approach, systematic
Protein molecular surface Interaction fingerprint extraction of patches
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Recent works at IML on
Geometric Deep Learning

 Mass-conserving LSTM

* Equivariance with respect
to adding mass on input

MC-LSTM: Mass-Conserving LSTM

Pieter-Jan Hoedt " ! Frederik Kratzert ' Daniel Klotz! Christina Halmich' Markus Holzleitner
Grey Nearing> Sepp Hochreiter ' * Giinter Klambauer '
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Recent works at IML on
Geometric Deep Learning

Hopper Rotating Drum
Prediction Ground Truth Prediction Ground Truth
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[LEARNING 3D GRANULAR FLOW SIMULATIONS

Andreas Mayr* Sebastian Lehner* Arno Mayrhofer’ Christoph Kloss'

Sepp Hochreiter*:* Johannes Brandstetter”*

“*ELLIS Unit Linz, LIT Al Lab, Institute for Machine Learning,

Johannes Kepler University Linz, Austria
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Recent works at IML: Immune
repertoire classification
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Widrich, M., Schéfl, B., Pavlovi¢, M., Ramsauer, H., Gruber, L., Holzleitner, M., ... & Klambauer, G.
(2020). Modern hopfield networks and attention for immune repertoire classification. Advances in Neural
Information Processing Systems, 33, 18832-18845.
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Summary

GNNs and Geometric Deep Learning are approaches to
look at Deep Learning architectures from the perspective
of symmetries, equivariances and invariances

Particular equivariances and invariances with respect to
transformations are desired, lead to certain architectures,
such as CNN

Graph neural networks, and message-passing networks
operate on graphs;

— Connections to transformers and convolutions

Active research areas and applications
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