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Overview

● Part 1:
– Recap on Deep Learning and multi-layer perceptrons
– Intro to Geometric Deep Learning and Graph Neural 

Networks (GNNs)
– General applications

● Part 2:
– EGNNs for binding site identification
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Graph neural networks and chemistry

● Graph neural networks (GNN) are a versatile technique in 
cheminformatics and computer-aided drug discovery (CADD)
– Bioactivity and property prediction and QSAR
– Forward- and retrosynthesis prediction
– Molecular encoders: encode a molecule as a vector of 

features
– Basis for generative models
– Representation learning tasks on macromolecules
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Graph neural networks and chemistry

● WARNING!

Graphs are only one 
possible representation of 
molecules
– Some ML researchers 

falsely think that the 
molecular graph is the 
“correct” representation
WRONG!

– Some ML researchers 
think that GNNs are the 
“correct” way to do 
learning tasks on 
molecules – WRONG! 

● BUT: GNNs are very 
versatile...



7

Recap: Deep Learning and Multi-layer 
Perceptrons (MLPs)



Notation, Deep Learning and
Empirical Risk Minimization

● We have access to a labeled dataset

● A model function with adjustable parameters

● We will adapt the parameters to minimize the empirical risk

● Using gradient descent
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Structure of a deep neural network 
(DNN)
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DNNs: notation
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DNNs: Forward pass

● Activations from one layer to the next layer:

● Full function:

● With bias units
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Why non-linearities?

● With non-linearity:

● Without non-linearity:
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A note on activation functions
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A note on activation functions: 
derivatives
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DNN: Forward pass
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Backpropagation in DNNs

● Without loss of generality, we derive with 
respect to a weight in the first layer:

● Now we treat the expressions A, B and C.
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Backpropagation in DNNs

● We first define:
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Backpropagation in DNNs

● Without loss of generality, we derive with 
respect to a weight in the first layer:

● Now we treat the expressions A, B and C.
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Backpropagation in DNNs

● Without loss of generality, we derive with 
respect to a weight in the first layer:

● A              : Depends on the choice of loss 
function and activation. If canonical links 
are chosen, this can result in
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Backpropagation in DNNs

● Without loss of generality, we derive with 
respect to a weight in the first layer:

● B         :        
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Backpropagation in DNNs

● Without loss of generality, we derive with 
respect to a weight in the first layer:

● Recursive formula for deltas:        
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Backpropagation in DNNs

● Without loss of generality, we derive with respect 
to a weight in the first layer:

● C:

where the non-zero entry      is at the  -th 
position. 
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Backpropagation in DNNs

● Overall we find

or conveniently:
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Summary of backprop

● Calculate deltas at output units
● Backpropagate deltas through network 

using

● Calculate weight update 
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The vanishing gradient problem

● We know from above:

● Thus we have:
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The vanishing gradient problem
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Online, stochastic and batch training

● Online learning/training: single sample from training set is propagated 
through network and then a parameter update is performed.

● Full-batch learning/training: all samples from training set are propagated 
through network and then a parameter update is performed.

● Stochastic learning/training: a small subset of samples from the training set 
are propagetd through network and then a parameter update is performed

Approx. the full-batch gradient with a random subsample (“mini batch”):
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Deep feed-forward neural networks

● Same principle as MLPs
– Layers of interconnected neurons
– More layers; more neurons
– Different activation functions
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Geometric Deep Learning 
and GNNs
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Currently two streams in ML

less inductive biases, 
more data, 
learn equivariances and 
invariances from data

more inductive biases, 
less data, 
build equivariances and 
invariances into 
architecturesVision 

transformer, 
MLPMixer, 
ConvNext, 
CLIP, ...

Graph neural 
networks, 
Message-passing 
networks, 
spherical CNN

GEOMETRIC DL
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Geometric Deep Learning

● Attempt at a unified 
view on Deep 
Learning 
architectures
– From the 

perspective of 
symmetry 
properties

● Comparison to 
different geometries 
in mathematics

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: 
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.
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Inductive biases

● “Biases and initial knowledge are at the heart of the ability to 
generalize beyond observed data” – Tom Mitchell

● “No generalization without inductive bias” – Max Welling, 
Amsterdam, April 20 2019

● Equip neural networks with biases that lead to models that 
learn to generalize well

● What could be such properties? 

Mitchell, T. M. (1980). The need for biases in learning generalizations (pp. 184-191). New Jersey: 
Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ..



33

Symmetries in computer vision tasks
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Symmetries in computer vision tasks

● Must learn invariance from data
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Geometric priors, symmetries, and 
invariances

● Intuitive: a symmetry of an object or system is a transformation that 
leaves a certain property of said object or system unchanged or 
invariant. 

● Geometric prior: knowledge about the structure of the object
● Transformations may be smooth, continuous, or discrete
● Everywhere in ML tasks
● Set of symmetries satisfies a number of properties

– Combination of symmetries
– Invertible
– In mathematics known as group
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Symmetries and groups

● Let    and     be two symmetries

● Example (computer vision): shifting an object on an image
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Invariance, invariant functions

● Invariances built in some Deep Learning operations
– We had already encountered some

● Max-pooling
● Mean-pooling
● Sum-pooling

– Could be extended to other invariances
● e.g. invariances to shifting objects  
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Geometric DL blueprint

● Not only CNNs fall under this blueprint!



39

Equivariance, equivariant function

● Convolutional layers are shift-equivariant:
– If object is shifted, the resulting feature map activations are 

also shifted
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The 4G or 5G of Geometric DL

● Structure of domain
● Particular invariances and equivariances for each domain
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Graph neural networks

● Main area of Geometric Deep Learning 
graphs
– Graphs are very general; 

● images could be understood as 
graphs 

– pixels are nodes, adjacent pixels 
have a connection (edge)

● Time-series could be 
understood as graphs

– Directed graph, time-point is node, 
connected to next time-point

● Sets could be understood as 
graphs

– Element of set is a node, all 
elements of set are connected

● No canonical order of nodes
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Graphs: ML description
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Graphs: Math description
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Machine learning on graphs

● Input objects for a machine learning method
– E.g. social networks, molecules
– Node-level classification: label per node has to be predicted

● Example: social network; predict where a person likes to go 
on holidays

– Graph-level classification: label per graph has to be predicted
● Example: drug discovery; predict whether a molecule is toxic 

● Desired invariances/equivariances
– Representation of graph nodes equivariant
– Prediction on whole graph: invariant to permutation of nodes
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Machine learning on graphs: 
Message-passing framework
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Machine learning on graphs: 
Message-passing framework
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Message-passing neural networks

● Two main steps and two multi-layer perceptrons (MLP):

message generation function

MLP

update function
MLP

●      : Indices of nodes in a graph
●      : representation of node     after    message passing phases
●                : initial representation are the node features (e.g. atom type)
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Read-out phase for graph-level 
classification

● Readout 
function

● Permutation 
invariant

● Example:

FC
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E(n)-equivariant neural nets (EGNN)
Satorras et al.

● Coordinate embeddings
● Node embeddings
● Message passing

● Properties: rotation-, and translation equivariance (layer) and 
invariance (whole network); E(n) equivariant

Font type!!
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Proof sketch of equivariance

● We first note that the messages are invariant under roto-
translations,

because 

● Then, we find by re-organizing the terms, that the coordinate 
embeddings 
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Overview of MPNNs and their 
associated groups
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Methods using the Graph Laplacian

● Can also be formulated as message-passing neural networks
● Reminder: adjacency matrix       (contains neighbourhood)
● Degree matrix:       (contains degree of nodes, diagonal)
● Graph Laplacian:
● Kipf & Welling (2016): 

message passing and node update in one

Makes connection with transformers obvious
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Analogy to convolutional networks and 
transformers

● Comparison of exchange of information in CNNs, Transformers, and 
MPNNs
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Problems with learning MPNNs
(without much details; informal)

● Limited expressivity: limited ability to distinguish non-isomorpic 
graphs (see later); → Weisfeiler-Lehman test

● Oversmoothing: representations of nodes become more and more 
similar over message-passing steps

● Oversquashing: influence of one node on another node depends 
decreases exponentially with length of shortest path 
(something like the “vanishing gradient problem” for GNNs)

● Under-reaching: Information from one node is necessary for 
correctly classifying another node, but there are insufficient 
message passing steps to transfer the information
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Aggregation functions

● Up to now, we have used sum as aggregation function

● This is good for expressivity (see later), but 

Schneckenreiter, L., Freinschlag, R., Sestak, F., Brandstetter, J., Klambauer, G., & Mayr, A. (2024). 
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks. International 
Conference on Learning Representations (tiny papers track) arXiv preprint arXiv:2403.04747.

https://arxiv.org/abs/2403.04747
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Problems with GNNs

● Limited ability to discriminate different graphs
– Aggregation function leads to problems (see Fig.)

● Graph isomorphism problem
– NP hard

● Weisfeiler-Lehman test

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. 
arXiv preprint arXiv:1810.00826.
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Weisfeiler-Lehman test: necessary 
condition for graph isomorphism
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Geometric DL: a short overview
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Applications

● Chemistry and Drug Design
● Protein biology: 3D conformations of proteins are point clouds; SE(3) 

transformer (roto-translation invariant)
● Recommender Systems and social networks
● Traffic forecasting
● Object recognition
● Game computing
● Natural language processing
● Healthcare
● Particle physics and astrophysics
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Applications
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Recent works at IML on 
Geometric Deep Learning

● Mass-conserving LSTM
● Equivariance with respect

to adding mass on input
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Recent works at IML on 
Geometric Deep Learning
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Recent works at IML: Immune 
repertoire classification

Equivariance Invariance

Widrich, M., Schäfl, B., Pavlović, M., Ramsauer, H., Gruber, L., Holzleitner, M., ... & Klambauer, G. 
(2020). Modern hopfield networks and attention for immune repertoire classification. Advances in Neural 
Information Processing Systems, 33, 18832-18845.



Summary
● GNNs and Geometric Deep Learning are approaches to 

look at Deep Learning architectures from the perspective 
of symmetries, equivariances and invariances

● Particular equivariances and invariances with respect to 
transformations are desired, lead to certain architectures, 
such as CNN

● Graph neural networks, and message-passing networks 
operate on graphs; 
– Connections to transformers and convolutions

● Active research areas and applications


