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Abstract

As nanotechnology advances, increasingly complex nanoparticles are being developed for various applications, raising critical concerns about their potential toxicity. Not only Nano-QSAR models have been developed to predict their
toxicity by cell lines separately, but also their applicability domain (AD) has been limited to specific nanoparticle types (i.e., bare metal oxide, coated metal, or carbon-based nanomaterials). This research introduced multi-target nano-
QSAR model, being developed with improved AD by training the model on multi-component nanoparticles (MC NPs) to use size-dependent electron configuration fingerprint (SDEC FP) and with one-hot encoded cell features to
predict cytotoxicity of MC NPs over 110 cell lines. The CatBoost regression model showed good performance (R? test = 0.877) and is now accessible through user friendly web interface (https://www.kitox.re.kr/nanotoxradar).
NanoToxRadar allows users to input nanoparticle specifications-including core, shell, doping, and coating materials, along with particle diameter-and receive predicted pIC, values across 110 cell lines.
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Significance of the Study

(®) All Data

- The interest is shifted towards the potential toxicity of multi-component nanoparticles (MC NPs, Figure 2) due to their small (N = 637) (D) Validation Chunk (0.3)
size, large surface area per volume, and even their complex components as nanotechnology advances. ol i — (=107
Main PI' Oblem = Training Data (0.8) Test Data (0.2)
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2. While quantum mechanical (QM) and molecular dynamics (MD) descriptors offer theoretical advantages, they require

substantial computational resources, additionally, molecular clusters representing nanomaterials often suffer from poor Rare Cell Chunk

always in training (N =89)
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3. Many nano-QSAR models have been developed separately, targeting specific endpoint such as cytotoxicity in specific cell lines.

Su eSted Solution Figure 3) Pipeline diagram of entire model development. (A) Model development pipeline diagram from data preprocessing to model deployment. (B) SDEC FP calculation schematic diagram with simple example in dataset. (C) Detailed
gg pipeline diagram of model development and validation from data separation to final test. (D) Detailed pipeline diagram of modified KFold cross validation in selection of feature number and hyperparameter optimization (K=3, folding three
times in above way)

1. Application of size-dependent electron configuration fingerprint (SDEC FP) to represent MC NP structures, improving
model’s AD. - Calculation of SDEC FP for the MC NPs as follows:

1) full size of SDEC FP without compression

2. Multi-target prediction is a better approach to increase data size through integration of different target endpoints measured
2) aggregated SDEC FP by adding up atomic orbital indices in the identical energy level theoretically

from 110 cell types by introducing cell features.

. . . . . 3) theaggregated SDEC FP without positive and negative sign, ignoring spin number
3. The optimal model is deployed on web environment to easily access of the model to the research community. ) S81¢8 P 8 Sty 15HOTTE °P

- One-hot encoded cell information vectors as follows:
1) all five-cell information
2) cell name alone
3) cell name and source tissues/ organs

4) cell name and anatomical classification

Results
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Figure 4) Heatmap visualizes the distribution of different cell lines across data points, with color intensity .
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with color gradient indicating the frequency of each element’s occurrence (B). Scatter plot demonstrates the
relationship between diameter of MC-NPs (1-700 nm) and cytotoxicity (pIC50). Higher cytotoxicity was observed
among MC-NPs with diameter smaller than 5nm. (C)
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Coating

L - NanoToxRadar is developed under responsive web design, thus researchers can use the model on the mobile environment as

Diameter

Sl l \ well. (Figure 8)

Figure 8) Web interface of NanoToxRadar and distribution of nanotoxicity prediction results across cell types. (A) User interface for query NP
include core, shell, doping, and coating compositions with doping ratio and diameter. (B) Radar plot shows the distribution of pIC50.
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