

Molecular Descriptors

Dragos Horvath, Gilles Marcou, Alexandre Varnek Laboratoire de ChemoInformatique, UMR 7140 CNRS – Université de Strasbourg 67000 Strasbourg, France dhorvath@unistra.fr

Molecular Descriptors or Fingerprints

- Need to represent a structure by a characteristic bunch (vector) of numbers (descriptors).
 - Example: (Molecular Mass, Number of N Atoms, Total Charge, Number of Aromatic Rings, Radius of Gyration)
- Should include **property-relevant** aspects:
 - the "nature" of atoms, including information on their neighborhood-induced properties, and their relative arrangement.
 - Number of N Atoms ⇔ (Primary Amino Groups, Secondary Amino Groups, ..., Amide, ..., Pyridine N, ...)
 - ... unless being a **H bond acceptor** is the key (O or N alike)!
 - Arrangement in space (3D, conformation-dependent distances in Å) or in the molecular graph (2D, topological distance = separating bond count)

Definition of molecular descriptors

The molecular descriptor is the final result of a logic and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into a <u>useful</u> <u>number</u>, or the result of some standardized experiment.

Roberto Todeschini and Viviana Consonni

Molecular Descriptors

Classification based on the origin of descriptors

• "experimental"

logP, aqueous solubility, Abraham's H-bond parameters, solvent parameters NMR shift, Often *predicted* by computer models

calculated

- > Assessed *in Silico* from 1D, 2D or 3D molecular structure
- > Expert-designed... or AI-designed!

Advertising: Position of Molecular Descriptor Designer. *Humans need not apply*!

- An AutoEncoder/Decoder is a Deep Neural Network producing an efficient dense representation of the input, by performing specific compression of learned data.
- The states of Bottleneck Neurons fully characterize the object!
- It's *reversible*: provide *any* vector $(x_1, x_2, ..., x_n)$ and the Decoder will return a chemical structure associated to those coordinates...

Molecular Descriptors

Classification based on described object

• Global

describing the whole molecule (molecular volume, molecular surface, dipole moment, topological indices, ...)

• Local

describing particular atoms or molecular fragments (atomic charges, bonds polarizabilities, CATS descriptors, ISIDA descriptors, ...)

• Field

describing molecular fields in the area surrounding the molecule (electrostatic potential, COMFA descriptors, ...)

Classification based on the dimensionality of structure representation

- 1D: constitutional descriptors: atom & bond counts, MW
- 2D: based on molecular topology: topological indices, fragment counts
- **3D**: geometrical parameters: molecular surfaces & fields, parameters calculated in quantum chemistry programs

2D - Topological Descriptors

Descriptors based on the molecular graph representation are widely used because they incorporate precious chemical information:

- size,
- degree of branching,
- neighborhood of atoms \rightarrow electronic & steric effects,
- flexibility
- overall shape,

Matrix representations

A molecular structure with n atoms may be represented by an n × n matrix (H atoms are often omitted).

Adjacency matrix : indicates which atoms are bonded. Bond order matrix : adjacency + bond orders.

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	1	0	1	0	0	0
3	0	1	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	0	2
6	0	0	0	0	2	0

Matrix representations

Distance matrix : encodes the distances between atoms.

Topological distance is defined as the number of bonds between atoms on the shortest possible path.

	1	2	3	4	5	6
1	0	1	2	3	3	4
2	1	0	1	2	2	3
3	2	1	0	1	1	2
4	3	2	1	0	2	3
5	3	2	1	2	0	1
6	4	3	2	3	1	0

It is a cheap and robust alternative to actual geometric distances, in Å

TI based on the adjacency matrix :

Zagreb group indices

$$\bullet \mathbf{M}_1 = \sum_{i=1}^n \delta_i^2 \quad \mathbf{M}_2 = \sum \delta_i \delta_j$$

where the vertex degree δ_{ι} is a number of σ bonds involving atom *i* excluding bonds to H atoms.

Zagreb group indices were introduced to characterize branching

So why should an obscure topological formula explain chemical properties?

Randic introduced a *connectivity index* similar to M_2

M. Randić, J. Am. Chem. Soc., 97, 6609 (1975)

Capturing Topology by Fragment Counts

ISIDA fragments

type	$\log P$	MR	type	$\log P$	MR
C3	-0.2035	2.753	$9 \times C18$	0.1581	3.350
$4 \times C18$	0.1581	3.350	$2 \times C20$	0.2713	3.904
$2 \times C23$	0.5437	3.853	$9 \times H1$	0.1230	1.057
$7 \times H1$	0.1230	1.057	N11	-0.3239	2.202
H2	-0.2677	1.395	calcd	2.75	50.39
02	-0.2893	0.8238	expt	2.63	49.67
O4	-0.4195	1.182			
calcd	1.40	34.66			
expt	1.32	34.66			

Chemical Relevance: 1. - Go beyond the obvious information in the graph

- Are these compounds nearly identical?
 - Yes, if you mechanically check the "brute" graph
 - No, if you "color" their graphs by relevant chemical properties pharmacophore type, for example

Note – the information you need to do the coloring is contained in the graph too: it's 2D! *ChemAxon pKa plugin*: https://docs.chemaxon.com/display/docs/pKa+Plugin

pH-dependent Labeling of ISIDA Pharmacophore Fragments...

MicroSpecies increment counters of contained fragments by their population levels

Chemical Relevance: 2 - Mother Nature is fuzzy – what about our descriptors? The Triplet Case

Pickett, Mason & McLay, J. Chem. Inf. Comp. Sci. 36:1214-1223 (1996)

Fuzziness – blurring the bin borders...

 $D_i(m)$ = total occupancy of basis triplet i in molecule m.

Quantum Chemical Descriptors

Quantitative values calculated in QUANTUM MECHANICS (semi-empirical, HF *Ab Initio* or DFT) calculations

- LUMO Lowest occupied molecular orbital energy
- HOMO Highest occupied molecular orbital energy
- **DIPOLE** moment
- Components of dipole moment along inertial axes (D_x, D_y, D_z)
- Hf Heat of formation
- Mean Polarizability $\alpha = 1/3(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$
- **EA** Electron Affinity
- **IP** Ionization Potential
- ΔE Energy of Protonation
- Electrostatic Potential -

$$V(r) = \sum_{A} \frac{Z_{A}}{\left|R_{A} - r\right|} - \int \frac{\rho(r')dr'}{\left|r' - r\right|}$$

Geometric Indices

Moments of inertia

(value of the moment, principal components)

- The moments of inertia characterize the mass distribution in the molecule

$I = \sum_{i} m_i d_i^2$

 $| I_1 \quad 0 \quad 0 \\ 0 \quad I_2 \quad 0 \\ 0 \quad 0 \quad I_1 |$ principal moments of inertia Inertia matrix

Radius of gyration

$$Rog = \sqrt{\left(\sum \frac{\left(x_i^2 + y_i^2 + z_i^2\right)}{N}\right)}$$

N: number of atoms x, y, z: the atomic coordinates relative to the center of mass

Ovality

Surface-based descriptors

- Surface area
 - Van der Waals, Solvent-Accessible, Molecular (Connolly) surface area

Surface Polarity descriptors

Topological Polar Surface Area: back to 2D!

Peter Ertl, Bernhard Rohde, and Paul Selzer, J. Med. Chem. 2000, 43, 3714-3717

3 <i>DP</i>	$SA \approx \sum_{groups}$	(Number of)	groups)×(Fitted	l group c	ontr	ibution))	
Table 1. Atomic Cont	ributions (Å ²) to PSA			traditional				
Table 1. Atomic Cont atom type ^a $[N](-*)(-*)-*$ $[N](-*)=*$ $[N](-*)=*$ $[N](-*)(=*)=*b$ $[N](-*)(=*)=*b$ $[N](-*)(=*)=*b$ $[N](-*)(=*)=*b$ $[N](-*)(-*)=*-1d$ $[NH](-*)-*$ $[NH](-*)-*$ $[NH](-*)(-*)-*$ $[NH-1](-*)(-*)=*$ $[NH+1](-*)(-*)=*$ $[NH+1](-*)=*$ $[NH+1](-*)=*$	ributions (PSA contrib 3.24 12.36 23.79 11.68 13.60 3.01 12.03 21.94 23.85 26.02 0.00 3.01 4.36 4.44 13.97 10.01	$\frac{A^{2}}{atom type^{a}}$ $\frac{A^{2}}{atom type^{a}}$ $\frac{A^{2}}{[nH](:*):*}{[n+](:*):*}{[n+](-*)(:*):*}{[n+](-*)(:*):*}{[nH+](:*):*}{[0](-*)-*}{[0][-*-*-1d]}{[0]=*}{[0H]-*}{[0-]-*}{[0][-*-*-1d]}{[0]=*}{[0H]-*}{[0-]-*}{[0](:*):*}{[S](-*)-*}{[S]=*}{[S](-*)(-*)=*}{[S](-*)(-*)=*}{[S](-*)(-*)=*}{[SH]-*}{[SH$	PSA contrib 15.79 4.10 3.88 14.14 9.23 12.53 17.07 20.23 23.06 13.14 25.30 32.09 19.21 8.38 38.80 29.24	400 - 300 - SG 200 - 100 -	traditional				•
$[NH2+](-^{*})-^{*}$ $[NH2+]=^{*}$ $[NH3+]-^{*}$ $[n](:^{*}):^{*}$ $[n]((-^{*})(:^{*}):^{*}$ $[n](-^{*})(:^{*}):^{*}$	$ \begin{array}{r} 16.61 \\ 25.59 \\ 27.64 \\ 12.89 \\ 4.41 \\ 4.93 \\ 0.22 \\ \end{array} $	$[s](:^{*}):^{*}$ $[s](=^{*})(:^{*}):^{*}$ $[P](-^{*})(-^{*})-^{*}$ $[P](-^{*})=^{*}$ $[P](-^{*})(-^{*})(-^{*})=^{*}$ $[PH](-^{*})(-^{*})=^{*}$	28.24 21.70 13.59 34.14 9.81 23.47	o - C) 10	00	200 3D PSA	300	400
$[n](=^{*})(:^{*}):^{*}$	8.39			3D PS/	A				

3D Lipophilicity Potential (Rozas)
$$MLP(j) = \sum_{i=1}^{n} \frac{f_i}{1+d_{ij}}$$

hydrophobic

hydrophilic

All molecules have the same logP ~1.5, but different 3D MLP patterns.

Autocorrelation of Molecular Surface Properties

d = [4.0, 5.0 [Å

- **Orientation-independent** description: distances do not change upon rototranslation of molecules
- Example: *p=Interaction energy with a molecular probe* (such as water); GRIND descriptors (Pastor *et. al., J. Med. Chem.,* **2000**, *43*, 3233–3243)

Autocorrelation of Molecular Surface Properties

M. Wagener, J. Sadowski, J. Gasteiger, J. Am. Chem. Soc. 1995, 117, 7769.

Field Intensity Descriptors in Surrounding Space are Reference System-Dependent

Fields are Orientation-Dependent: to compare them, molecules must first be ALIGNED in 3D

CoMFA: Comparative Molecular Field Analysis

- Red zones are favorable for interactions with the positively charged fragments
- Blue zones are favorable for interactions with the negatively charged fragments

Overlay-Dependent Descriptors: Pharmacophore Occupancy

- Pharmacophore models represent binding mode hypotheses:
 - use overlay models to "bind" descriptors to specific spots in space
 - Pharmacophore hot spots are defined by the consensual presence of groups of similar type, throughout the series of known actives
 - Descriptors are occupancy levels of these spots

CONCLUDING REMARKS

For Each Case Study, Suited Descriptors... There's no difference between theory and practice, but in practice there is

- In theory, molecular topology is all you need to know...
- ... but often, the implicit information present in the topology should be made "explicit" by the description strategy:
 - Geometry is rather reliably "written" in the topology
 - The preferred protonation status is "written" in the topology as well **but not always easy to read**...
- **In practice**, no descriptor provides a complete characterization of a molecular object
 - If you describe the pharmacophore, you should not expect predicting reactivity... unless a lucky correlation makes you believe in it.
 - For modeling *in vivo* properties, need to understand binding (pharmacophore), metabolism (reactivity), bioavailability (lipophilicity, *etc*). It's Mission Impossible...

A Descriptor MUST Have ...

- an unambiguous algorithmically computable definition
- invariance with respect to labeling and numbering of atoms
 - Make Autoencoder Latent Spaces numberingindependent!
- invariance with respect to roto-translation, unless based on an unambiguous molecular overlay procedure
- values in a suitable numerical range for the set of molecules where it is applicable to

A Descriptor Should Have ...

- a structural interpretation
- a good correlation with at least one property
- no trivial correlation with other molecular descriptors
- gradual change in its values with gradual changes in the molecular structure
- no dependence on experimental properties
- no restriction to small classes of molecular structures
- if possible, some discrimination power among isomers
- preferably, no dependence on other molecular descriptors
- decodability ? (back from the descriptor value to the structure)