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Introduction
§ Reaction conditions play a pivotal role in determining the outcomes of chemical syntheses, but despite this importance, there are still relatively few computational tools to predict 

optimal reaction conditions directly.

§ Underlying problems with reaction data are well documented1-3 but have underdiscussed implications for the design and evaluation of condition prediction models.

§ These problems manifest themselves in poor model performance4, where state-of-the-art approaches cannot significantly improve upon a literature popularity baseline.

§ We suggest alternative approaches for the design and evaluation of condition prediction models and investigate the impact that reaction representation can have on existing model 
performance.

Conclusions
§ Predictive models using literature data can surpass baseline 

performance with appropriate reaction representations. 

§ Further gains are possible through improved input and output encoding 
to address data biases and sparsity. 

§ Evaluation should go beyond binary accuracy, incorporating expert 
knowledge or experimental validation. 

§ Expert-defined reagent classes offer a promising strategy to mitigate 
sparsity, assuming intra-class reactivity is consistent.
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The Impact Of Reaction Representation
§ It has previously been suggested that ML models cannot significantly improve upon 

literature popularity baselines, for a range of models and input representations4.

§ The author’s best model, a Multi-Task neural network based on Morgan fingerprints, 
gave minor improvements compared to popularity when predicting the expert-
assigned class of solvent and base for heteroaromatic Suzuki-Miyaura reactions.

§ To investigate the impact that representation can have on model performance, we 
build and assess Condensed Graph of Reaction-based models on this dataset. 
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CGR-Based Representations Improve 
Upon A Challenging Literature Baseline

§ CGR-based representations improve 
performance significantly above Morgan 
fingerprint and popularity baselines. This is 
particularly pronounced when considering 
the ‘overall’ accuracy of predicting both 
solvent and base simultaneously.

§ Even a simple similarity search based on 
these CGR-Fragments performs comparably 
to a more complex model based on Morgan 
fingerprints.

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
@

 K

Base Solvent

Top-K Accuracy Comparison For Selected Models
Solvent/Base = Independent Predictions; Overall = Likelihood Ranking of Combinations Applied

Method
Pop. Baseline
Morgan MTNN
KNN
CGR MTNN

1 2 3
Top K

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
@

 K

1 2 3
Top K

Overall

1 2 3
Top K

1 2 3
Top K

CO
ARSE 

FIN
E

Chemically-Informed Condition Classes Improves Performance

§ As expected, a coarse-grained treatment of reaction conditions improves 
performance, and represents a potential approach to combat data sparsity in large-
scale condition prediction models.

§ We see a noticeable difference in performance depending on when this categorisation 
is applied. With models trained on the ‘categorised‘ conditions performing better 
than those trained on the ’exact’ conditions and then applying categorisation to the 
outputs. 
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