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' Introduction

KIT&UST KIT L)

Korea Institute of Toxicology (KIT)
*Research institute under Ministry of Science
* Internal funding program: 3 + 3 + 3 (1,700,000 EUR / year)
* External funding program
- Students make employment contract, which includes insurance, paid vacation, and monthly income.

*Dormitory is available if there is empty room.

-UST (University of Science and Technology)
*KIT is one of campus in UST.
- Students apply to UST specifying campus in UST.
*UST has its own dormitory.
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*Education
Bachelor: Biology (15!, Computer science (2"9)
* Master & Doctor: Cheminformatics

- Major experiences: ADMET prediction (machine learning)

*Research Experiences
- Korea Institute of Toxicology: in silico model development
- University of Science & Technology (UST): Al toxicity prediction (lecture)

* AiFrenz (board member): Advanced machine learning

*Global Collaboration (Horizon 2020, Horizon Europe)
* Al drug design: AiChemist
* Nanotoxicity: Gov4Nano & SUNSHINE
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ToxSTAR webpage

https://www.kitox.re.kr/toxstar

) @
mKorea Institute of Toxicology About Prediction Notice FAQ EN K'Tnm Institute of Toxicology About Prediction Notice FAQ EN

STAR

PREDICTION

RSTAR

1. The models implemented in this page were developed and published. You can find details of the models here

Korea Institute of Toxicology ( https://pubmed.ncbi.nlm.nih.gov/32116729/)

2. Summary of the models are described here.

3. Input molecule preparation
a. You can draw it in the Molecule Editor (drawing tutorial: https://youtu.be/bJ4wjuPcVig)
b. You can find Smiles Code of your molecule from PubChem ( https://pubchem.ncbinlm.nih.gov/)
4. Select molecule type as 'Drug' if the input molecule is a drug molecule or 'Drug metabolite' if it is a drug metabolite. This option will select

prediction models to use.

5. Click submit button. When prediction outcomes are ready, this page will automatically show the result.

NOTICE 5 What is ToxSTAR?

Molecule Editor Smiles Code
©@Owix| |58 % MMXeR
27 Prediction models were added 21 ToxSTAR is a platform to predict human toxicity caused by = —==~A000000F% CC(=0)clccc(O)cct
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Drug-induced cholestasis, cirrhosis, hepatitis, and steatosis models were implemented in drugs and chemicals through integration of biotechnology N
2021.12 ToXSTAR. You can U... (BT) and information technology (IT). Currently, we are 0
working on Drug-Induced Liver Injury (DILI) prediction s Molecule Type XamD:S
with alternative testing methods to support 3Rs. LE| X
Periodic Table and Drawing Structure Information 2019-09-07 el @Drug O Drugmetabolite
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B. Bienfait and P. Ertl, JSME: a free molecule editor in JavaScript, J. Cheminformatics 5:24 (2013)

Pushing the boundaries of /n silico models
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ToxBBB KT Lswtasse

Korea Institute of Toxicology

https://www.kitox.re.kr/toxbbb
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NanoTox Radar KT cvsias

https://www kitox.re.kr/nanotoxradar

tano

P
Q | ) ) a n D s Nanotoxicity

Tox Radar — Prediction Program

C Reset

Coating Carboxyl (lipoic acid) v

Diameter nm

Completion

Prediction OutPut

Cytotoxicity Probability(A549 cell death > 20% at 100 pg/mL) :
0.1952

Cytotoxicity benchmark dose 5% (A549, BMDS5, pg/mL) : 5.4572

Uncertain 2
Zeta Potential (Ev) : -8.0367
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The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems
is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present Deep-Q-Network = X5 ZHeot =2 L24F
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Large language models have been shown to be beneficial for chemists in various ways. They can help in understanding the language of

chemistry, such as molecular models and structural formulas, which are essential for meaningful learning of the subject (], Additionally,
these models can be parameterized through in-context examples, allowing them to perform novel tasks and follow instructions with just

a few examples (2153, Furthermore, the use of large language models can aid in estimating language models using large datasets by

breaking down the estimation process into sub-processes and parallelizing computation (4], Overall, these models have the potential to

enhance the capabilities of chemists and improve their understanding and performance in the field.
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TL:DR: In this paper , the authors extend this line of reasoning and present a method which
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obtain a 6.4% improvement over the chain-of-thought baseline.
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Abstract: In recent years, large pre-trained language models (LLMs) have demonstrated the
ability to follow instructions and perform novel tasks from a few examples. The possibility to
parameterise an LLM through such in-context examples widens their capability at a much lower
cost than finetuning. We extend this line of reasoning and present a method which further
expands the capabilities of an LLM by embedding it within an algorithm or program. To

demonstrate the benefits of this approach, we present an illustrative example of evic ...read more
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' Molecule design with generative Al

DRL for de novo drug design

Rewards
VEGFR2 plCsg
hERG plCsg
(Unit: nM)

Descriptor
for each atom

DRL for drug design

State
Modified
molecule

/ N

— Environment «+——

Actions
Structure
modification
> Agent ——————
1]
r'ﬁ” RL agent % i
CNN —1 Action set
fo (x) %

t om addition
(C,N,0O,S,F, Cl,Brl)

Bond order increase

(Single > Double, Double > Triple)

e

Current state

VEGFR2 plCs,

hERG plCs,
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Korea Institute of Toxicology
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%n /- PO

L)

S(IV)-addition Atom substitution
(C,N,0O,S,F,Cl,Brl)
=l [
AN
|

NN

3/

4
I
7 5

=~
N Bond formation
(new bond addition between

non bonded two atoms)
®

Bond order decrease
(Triple > Double, Double - Single)
Or remove bond
Slngle > None

Q —
NH

\ N
RLagent =
CNN ol
N/
o O~

Next state
VEGFR2 pICs5;

hERG plCsy g



Molecule structure modification

Molecule design with generative Al

1 2 3 4 5 6
0/ 011]-03[99 | 12| 10| 40
0
— 02 |-13]1 84 | 29| 01| 49
RL model
CNN
fo (x)
12 11 [ -30] 21 |12 [ -10] 2.0

%NH/OH Apply action 3 on atom 0
NN M

v
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Reward

100

/ —N
A fH(vegfrz)(Y)
‘ SMILES code

¢ |C50

75+

VEGFR2 plCsg

lon Current (% of control)

ibebtaal P | PO -~ .
107 10° 10’ 10° 10°
[Concentration] / [lCSO]

* pICSO (‘lOg10|C50)

Fingerprint(y) J

hERG plCsg

f@(hERG)(y)

* VEGFR2(pICs) — hERG(pICsp) - penalty
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Efficacy & toxicity both matter KIT vy
, 2.8
VEGERS Increase p|C50(\/EGFR2) + decrease pIC5O(VEG/:R2; 1 -3.05
1-4.3
Initial reward R
0ICs; ® eturn
NERG-4.5 -0.4
decrease p
-71.2 o
+
®.89
Initial structure Cralues e e
\ | H \ ] \ B S/OH
N/ —N DRL model §> re _~ | IPRL modeI:| %> ?’OH _~ ||PRL mode] §> —N
...... CNN 2 CNN 4 CNN |}4
D \_/ & 7%‘ \/\N> N7/ R Z{ Q\ 7t o _JE Q \_/

o Life:5 @@ Life: 5@ Life: 4 @ Life: 3 Q@
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. Take action ICIT 2ugwotaas
|:\\IEI3| structure — lo’ 1) Apply action =
S N\ Y\/ 2) Update pICs, (VEGFR2 & hERG)
. 0 A N 3) TDE:i calculation
TDEiI (State) N 4) Life update
1 Environment
State Action (atom 0, action 3)
fO(vegfrZ)(y)
12 Reward
VEGFR2 plCs 1 2 3 4 5 6

(R?%:0.68, test)

When episode comes to an end

« Calculate loss (11 algorithms) 02 1-13]84 |29 |01 |49
hERG plCsq 1. Cross entropy RL model
R2: 0.65. test 2. Value optimization P
(R%0.65, test) 3. Policy optimization
fo(hERG) ) 4. MCTS
12011 (-30|21 |12 |-10| 20
Episode Policy update Episode Policy update
Summary CPU CPU
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Asynchronous DRL

Parallelize molecule generation

RL agent

A

v

CNN
fo (x)

RL agents running episode in each
node do not have identical weights.

Chy

Environment

HN/‘KD
State Action
Reward @
OH

Environment

H
N
JNl\ | /> H State Action
H N N
H

Reward @

[ Environment
State Action
HO
i Reward

RL agent
CNN

fo (x)
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Asynchronous DRL: Master-slave

Queue: First-In-First-Out

Library: mpidpy, mpi_master_slave

RL agent
CNN

fo (x)

Master

Slave
CHy

/‘K Environment

State

i Reward @
OH

HN

Action

Slave

Environment

Jl\ | />'H State Action
g

N N
I
H Reward

RL agent
CNN

fo (x)

Slave

Environment

NH,
State Action
HO
L Reward

RL agent
CNN

fo (x)
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Rule of five EPFL MUNICI?
1. Hydrogen bond donors < 5 @ I" ‘ Astrazeneca

2. Hydrogen bond acceptors < 10
3. Molecular weight < 500
4. ClogP <5

Beyond the rule of five
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Inorganic
pharmaceuticals

Natural products
Covalent inhibitor

Looking for a PhD student for the project IMN Sisac
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