Evaluating the Faithfulness of Fingerprint-based Explanations

Marcel Hiltscher

Table of Contents

Motivation: Why do we care?

Experimental Framework

• Discussion of the results

What is Faithfulness?

A faithful explainable AI (xAI) method should reflect the underlying mechanism of the model's predictive performance

- = Model uses features of these atoms for its predictions
- = xAI method highlights this group of atoms

The Case Study

Very simple: Predicting the number of benzene rings in a molceule

The Faithfulness Aspect

In a perfect world, a model with a R²=1 should only use features that are associated with benzene

= Atom Attributions

Experimental Setup

Fingerprint types

Hashed-based: ECFP, Count-based Explicit (non-hashed): Sort & Slice

xAI methods

Global: XGBoost Gain

Local: SHAP

Results: Model Training

- Hyperparameter optimized on 5 random splits
- Result is the mean of the 5 test splits

Mapping back the attribution scores

Example: Bits with a counts and without bit collisions

Attributions = [0.1, 0.5, ..., 0.03, 0.4]

Attributions atom 1 =
$$\frac{0.1}{1}$$

Attributions atom 2 =
$$\frac{0.1}{2}$$

Attributions atom 7 =
$$\frac{0.5}{2}$$

Attributions atom 8 =
$$\frac{0.5}{2}$$

All atoms of a given substructure will get the same attribution score

Faithfulness Metric

Model should learn the number of benzene rings, faithfulness metric should reflect that

$$a_i = \text{Atom Attributions}$$

$$F_{benzene} = rac{\sum_{benzene} a_j}{\sum_{all} a_i}$$

The higher the fraction is the better

Results: Benzene Fraction

Even with nearly perfect models, Benzene does not get the full attribution mass!

Challenge 1: Shortcut Learning

Example from Sort & Slice (2048 length)

This is the substructure with the highest importance:

11

Often not easy to find and evaluate these shortcuts.

Faithfulness evaluation based on a given ground truth can be obscurred by shortcut learning. Is the xAI method faithful in context of the shortcut or not?

Challenge 2: Fingerprints Granularity

Substructure

Diffusion of substructure importance to different chemical contexts

All the highlighted atoms get the same attributions. One does not now from which chemical context it gained the importance

Summary

- Effective evaluation requires more than a good performing model (shortcut learning, fingerprint granularity)
- Count-based fingerprints improve attribution focus compared to binary fingerprint (ECFP)
- No major differences between fingerprint sizes
- No major difference between hashed and non-hashed (Sort & Slice vs. Count-based)

Thanks

