

DC5: Combining QM simulations and ML models for reactivity prediction

Bob van Schendel

Reactivity prediction

- Many regions in reactivity prediction with sparse data
- Generating big datasets with QM simulations is expensive

QM and ML interplay

- Approximate experimental results
- Computationally expensive and slow (multiple hours to multiple days)
- Approximate QM results
- Computationally cheap and quick
- Limited by experimental + generated data

Train ML model on all available data

Sample points for QM simulation

Augment dataset with new data

2 parts: QM data generation & ML model

- Runs different programs as part of a QM workflow
- Long and computationally expensive
- Runs as single model or hybrid model (part simulation)
- Relatively short and computationally inexpensive

 Goal: approximate the experimental results

Goal: approximate the QM workflow results

First project:

Model Giese-like radical addition reactions to predict reaction feasibility

$$R$$
 OH
 R
 OH
 R

$$\underline{R} \longrightarrow R \xrightarrow{C^{+}} \underline{R} \longrightarrow R \xrightarrow{C^{-}} \underline{R}$$

QM Workflow structure

Generating intermediate states and product

Conformational sampling

Selection of diverse conformers

Quick geometry optimization

DFT geometry optimization

Current workflow

Calculated Molecular properties

- Gibbs free energy (GFE) for each component
- Energy difference between reactants and products
- Redox potentials
- Radical reactivity
- HOMO-LUMO
- Electrophilicity & Nucleophilicity

Initial validation for w/o DFT opt.

- Enthalpy change (ΔH) is predicted reactivity indicator
- Subpar accuracy
- Many false positives

Initial validation for w/o DFT opt.

- Using only predicted reactivity not sufficient
- Need to explain/predict the false positives
- Possible explanation: redox potential are too large/small

Giese-like radical addition reaction

Redox potential validation with ROP313

Setup:

- Only take the organic molecules from the ROP313 dataset
- Calculate oxidation potential for organic compounds
- Same setup as the QM workflow

Goal:

- Calculating the Gaussian redox potential offset (-4.26V)
- Benchmarking our redox potential calculations (MAE = 0.18)

Hagen Neugebauer et al., "Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods," *The Journal of Physical Chemistry A* 124, no. 35 (2020): 7166–7176, https://doi.org/10.1021/acs.jpca.0c05052.

Redox potential distribution comparison

False positives:

- Difficult to chemically explain failures
- Need to improve experimental setups

Adding DFT geometry optimization to workflow

Effect of additional molecular descriptors on prediction of experimental success

	Reactivity + redox potentials			All + HLG + nucleo/electrophilicity		
Model	Precision	Recall	F1-score	Precision	Recall	F1-score
Logistic regression	0.76	0.70	0.70	0.67	0.66	0.66
Random Forest	0.63	0.62	0.62	0.68	0.68	0.67
Decision tree	0.57	0.56	0.57	0.70	0.69	0.68
XGBoost	0.68	0.66	0.66	0.73	0.71	0.71
Neural network	0.65	0.57	0.49	0.60	0.58	0.57

Train ML model on all available data

Sample points for QM simulation

Online model

Augment dataset with new data

The goal/idea of my PhD

 Many areas of reactivity prediction need more accurate models

Many or these have sparse data = can't train ML models

We develop QM-workflows to generate high-quality data

Then train hybrid ML models with active learning

Supplementary slides

Workflow expanded

