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Introduction
What Are Reaction Conditions? 

Key Points

§ Chemical species or parameters that 
facilitate a chemical reaction occurring.

§ From chemical species (reagents), to 
physical parameters.

§ At its most fine-grained level, conditions 
encapsulates all non-reactant variables 
in a reaction.

§ Optimal conditions can be either 
‘general’ (best over a range of reactants) 
or ‘substrate-specific’ (best for a 
specific reactant pair). 

Reacting species 
which do not 
contribute a heavy 
atom to the 
product.

Here:
§ Pd Cat.
§ Ligand
§ Solvent
§ Base
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What Are Reaction Conditions Composed Of?

PHYSICAL PARAMETERS
NON-CHEMICAL VARIABLES

Other non-
chemical 
variables that 
influence a 
reaction.

Here:
§ Temp.
§ Time
+ many more… 
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Introduction
Why Do We Care?

Key Points

§ Reaction conditions have a large impact on the 
success of chemical transformations.

§ Even small changes in conditions can lead to 
completely different reactivity.

§ Predicting which conditions will lead to 
‘successful’ reactions is therefore critically 
important in any chemical synthesis.

What Role Can ML Play? 

Outcome

Experiment Number

Better Outcomes

Faster Optimisation

ML-Guided Initial Condition Prediction + BO
Improve starting points, fewer experiments required

Ideal ML Model Condition Prediction
Predict the best conditions, immediately

No Computational Help e.g. DoE, OFAT
Inefficient, can’t capture complex relationships

ML-Assisted Experiment Planning e.g. BO
More informed experiment design



Modelling: Theory
How Can We Predict Optimal Reaction Conditions?

Key Points

§ Modelling reaction outcomes typically requires both the 
reaction equation and conditions as input.

§ To predict the best conditions, we can either:

q Enumerate all condition combinations, predict the 
outcome under each set of conditions, and pick 
the conditions leading to the desired outcome.

q Directly predict the conditions, using the reaction 
equation alone.
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Modelling: Challenges
Literature Data Isn’t Great

1. F. Strieth-Kalthoff, F. Sandfort, M. Kühnemund, F. R. Schäfer, H. Kuchen and F. Glorius, Angewandte Chemie International Edition, 2022, 61, e202204647.

Key Points

§ The many-to-many nature of condition prediction makes reaction-
condition space combinatorially large 

§ Literature data suffers from a number of problems: 
§ Reporting Bias: tendency to only report successful reactions
§ Selection Bias: tendency to rely on established and available 

routines 
§ Experimental Noise: variance in reaction outcomes for the same 

reaction protocol

§ The first two points lead to a lack of negative data, and data sparsity

Reactions can proceed under many conditions, but only a small 
number are  reported. Lack Of Negative Data

Biases in reaction data favour 
successful reactions.

Leads to imbalanced datasets
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Many-To-Many Correspondence

One Reaction
Many Conditions

Br B(OR)2

Br B(OR)2

Conditions

Conditions

One Set Of Conditions
Many Reactions

This Complicates Model Design + Evaluation
And causes data sparsity.



Modelling: Challenges
Data Sparsity

1. Beker, W. et al. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. 
Journal of the American Chemical Society 144, 4819–4827 (2022).

Key Points

§ The extent of data sparsity is dependent on the number of variables 
that we want to model.

§ More variables → condition space is larger → data sparsity gets 
worse

§ Data sparsity will also get worse when considering higher fidelity 
variables.

§ Other confounding variables too, like personal preference and 
availability of reagents in the lab complicate prediction of conditions.

Most Reactions Only Appear Under A 
Single Set Of Conditions
Making it difficult for models to learn trends in both 
reactant and condition reactivity.
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Sparsity Becomes Worse When 
Modelling More Condition Variables
Therefore, models must balance the scope and 
granularity of their predictions. 



Modelling: Challenges
How Should We Evaluate Predictions?

1. Beker, W. et al. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society 144, 4819–4827 (2022).
2. Gao, H. et al. Using Machine Learning To Predict Suitable Conditions for Organic Reactions. ACS Central Science 4, 1465–1476 (2018).
3. Wang, Z., Lin, K., Pei, J. & Lai, L. Reacon: a template- and cluster-based framework for reaction condition prediction. Chemical Science 16, 854–866 (2025).

Key Points

§ Models are typically evaluated using top-k 
accuracy, but this doesn’t tell the full story.

§ Gold standard: experimental validation

§ In Silico? 
q Expert-assigned reagent classes

Requires selection of reagent classes.

q Condition similarity score 
Requires a meaningful encoding for the 
reaction conditions.

Evaluating Predicted Conditions

True

False

Example Evaluation Workflow

Similar Reactivity
To Ground Truth?

Matches
‘Ground Truth’?

Predicted Conditions

Ideal
Model 
Outputs

Dissimilar

Similar

Condition SpaceNumeric Condition Representation
Physical Properties, Learnt Embeddings etc.

Assessing Prediction Suitability

QUALITATIVELY

Would a 
synthetic 

chemist be 
willing to try 

these 
conditions?

QUANTITATIVELY

What is the 
similarity between 

the predicted
condition and the 

’ground truth’
condition?

‘Condition Suitability’

Similarity to ‘Ground Truth’

Assessing Condition Similarity

EXPERT-ASSIGNED REAGENT CLASSES
Does the predicted reagent fall into the same ‘class’ as 
the ‘ground truth’ reagent?

Exact Match: MeOH

Fine-Grained Match: Alcohol

Coarse-Grained Match: Polar

‘FEATURISING‘ CONDITIONS
How similar are the representations of the predicted 
reagent/condition compared to the ‘ground truth’?

E2

E1

Reagent Classes Follow Known Reactivity Trends
I.e. all reagents within the same class should lead to similar 
outcomes

Project



The Impact Of Data Problems 
Models Can’t Outperform Literature Popularity

1. Beker, W. et al. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. 
Journal of the American Chemical Society 144, 4819–4827 (2022).

Key Points

§ Beker et al. have previously suggested that models can’t 
significantly outperform popularity baselines, using a case study 
on heteroaromatic Suzuki-Miyaura couplings.

§ Tested a range of representations and model types

§ These models couldn’t improve upon simply choosing the most 
popular conditions from the literature



Case Study: Representation
Can We Improve On Literature Popularity?

1. Varnek, A., Fourches, D., Hoonakker, F. & Solov’ev, V. P. Substructural fragments: an universal language to encode reactions, molecular and supramolecular 
structures. J Comput Aided Mol Des 19, 693–703 (2005).

Key Points

§ We want to investigate if a Condensed Graph of Reaction 
representations can improve model performance, despite underlying 
data problems.

§ Specifically, can alternative reaction representations improve model 
performance?

§ CGR-Based methods have shown strong performance in the 
prediction of other reaction properties:
§ Activation Energies
§ Reaction Rates
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Case Study: Representation
Dataset Construction

1. Beker, W. et al. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society 144, 4819–4827 
(2022).

2. Heid, E. et al. Chemprop: A Machine Learning Package for Chemical Property Prediction. Journal of Chemical Information and Modeling 64, 9–17 (2023).

Key Points

§ Extract of reactions from USPTO, followed by 
categorization of solvent and bases into their 
classes.

§ 2x Multiclass-classification tasks:
§ Base: 7 Classes
§ Solvent: 13 Classes (‘Fine’-Grained) or 6 Classes 

(‘Coarse’-Grained)

§ Create CGR fragment features (or just CGRs 
themselves for use with ChemProp).

Predicting Conditions With CGRs

Dataset Construction

USPTO

Extract Hetero-Aromatic

Suzuki Reactions

Reactions Final Dataset

Cluster Reagents

Drop Duplicates

Reagent Clustering

Expert-Assigned Classes
Same classes as Beker et al.
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Independently

Likelihood Ranking
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Inputs

`

FFNN
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Models



Case Study: Representation
Modelling Workflow

1. Afonina, V. A. et al. Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach. International Journal of Molecular Sciences 23, 248–248 (2021).

Key Points

§ CGRs or CGR Fragments as input

§ Predict Solvent and Base independently

§ Use the ‘Likelihood Ranking’ approach to combine 
independent predictions into a combined 
prediction of both base and solvent.
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Case Study
Results: The Impact Of Representation

Key Points

§ CGRs can improve upon the 
performance of Morgan fingerprint-based 
models.

§ Even kNN with CGRs performs 
comparably, or even better than, the 
MorganFP-based model.

§ Whilst they do outperform literature 
baselines, there is still some way to go in 
terms of performance – particularly for 
solvent.
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Case Study
Results: The Impact Of Condition Classes

Key Points

§ We can also demonstrate the impact of 
‘clustering’ conditions into classes. 

§ As one might expect, reducing the number of 
classes dramatically improves model 
performance.

§ By performing this clustering in pre-processing we 
can improve results over performing this in post-
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Finishing Up
Conclusions And Takeaways

Conclusions

§ Understanding the role that models trained on literature data can have on synthesis.
§ Large-scale ‘global’ models: can’t directly predict exact optimal conditions but can suggest useful starting points for BO 

and HTE.
§ Small-scale ‘local’ models: underlying data quality higher – can predict optimal conditions.

§ Issues with literature data necessitate countermeasures, like creation of condition classes or featurization of conditions, to 
mitigate data sparsity.
§ This is particularly important if we want to model more variables.

§ We suggest that models can outperform literature popularity baselines, provided they use the correct representation.

§ The clustering of similar conditions can also improve performance, and represents an important way to mitigate data sparsity, 
provided the reactivity of conditions within a cluster is consistent.

Future Work

§ Develop a method to automatically assign conditions to clusters based on their reactivity

§ Use this representation (or derivatives of this) as a target for new models



Thank you for listening
Any Questions?


