DC3 – Karoline Schjelde

Predicting side reactions using a combined meta-dynamics-MD and ML approach

Academic Supervisor: Jan Halborg Jensen | Industry Supervisor: Mikhail Kabeshov

Overview

Overview

- What I am currently working on
- Implemented using python and SLURM
- Should be automatic eventually..

Overview

 Automatic generation of the catalytic cycle as PoC

Role of the Base in Buchwald-Hartwig Amination

Ylva Sunesson,[†] Elaine Limé,[‡] Sten O. Nilsson Lill,[‡] Rebecca E. Meadows,[§] and Per-Ola Norrby*,^{†,‡}

[§]Pharmaceutical Development, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, United Kingdom

Figure 3. Free energy profile (FEP) of the catalytic cycle in benzene. Curved lines represent monotonous reactions without a potential energy barrier, that is, a diffusion-controlled free energy barrier of $\sim 20 \text{ kJ mol}^{-1}$ to association. Dotted lines show multistep reactions with expected low barriers, but potentially including low-energy intermediates. The boxed area includes multiple steps that we investigated further (vide infra).

[†]Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Göteborg, Sweden

[‡]Pharmaceutical Development, Global Medicines Development, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden

Meta-MD simulations

- Run with two sets of params:
 - Runs until bond breaks
 Looking at simulation time steps, gathering reaction steps for each
- Takes SMILES as input

1 Step Reactions

- Sorted based on canonical smiles:
 - Counts occurrenceTwo types
 - Saves SMILES
 - Canonical smiles and metal centers -> issue Random

verview Meta-MD Simulations 1 Step Reactions SMILES to XYZ Calculating Energies Reaction Energies Next Steps

Common Intermediates

• Unique Molecules:

One mol at a time
 Avoid doing the same calculations over and over

	∆ Unique_SMILES ···
0	C=C(C)C
1	CC(C)(C)P(->[Pd+2](<-[Br-])<-[c-]1ccccc1)(C(C)(C)C)C(C)(C)C
2	CC(C)(C)[O-]->[Pd](<-[Br-])(<-C1=CC=C=CC=1)<-P(C(C)(C)C)(C)(C)C)(C)(C)C
3	CC(C)(C)P1(C(C)(C)C) -> [Pd+2](<-[Br-])(<-[c-]2ccccc2)<-[H]CC1(C)C
4	CC(C)(C)[O-]->[Pd+2]1(<-[Br-])(<-[c-]2ccccc2)<-[H]CC(C)(C)P->1(C(C)(C)C)C(C)(C)C
5	CC(C)(C)Oc12->[Pd](<-[Br-])(<-P(C(C)(C)C)(C)(C)C)C(C)(C)C)<-c1cccc2
6	CC(C)(C)OP(C(C)(C)C)(C)(C)C) -> [Pd+2](<-[Br-])(<-[c-]1ccccc1) <-[C-](C)(C)C
7	CC(C)(C)[O-]->[Pd+2](<-[Br-])(<-[c-]1ccccc1)<-P(C(C)(C)C)(C)(C)(C)(C)(C)(C)(C)
8	CC1(C)C[H] -> [Pd](<-[Br-])(<-[c-]2ccccc2) <-P(C(C)(C)C)(C(C)(C)C)O1
9	CC(C)(C)[O-]
10	CC(C)([O-])C[H] -> [Pd+2](<-[Br-])(<-[c-]1ccccc1) <-P(C(C)(C)C)(C)C)C(C)(C)C)
11	CC(C)(C)[O-]->[Pd+2]12(<-[Br-])(<-P(C(C)(C)C)(C)(C)C)C(C)(C)C)<-C3=C->1[CH-]->2C=C=C3
12	CC(C)(C)[O-]->[Pd+2]1(<-[Br-])(<-[c-]2ccccc2)<-[H]CC(C)(C)P->1C(C)(C)C
13	[H+]

Overview Meta-MD Simulations 1 Step Reactions SMILES to XYZ Calculating Energies Reaction Energies Next Steps

SMILES to XYZ

RDKit:

- Embedding comes with its own set of issues
 - Changing two dative to one
 Planer configurations around metal
 Adding Hydrogens

Conformers

3 + 3 * Rotatable bonds

Showing conformers for: $CC(C)(C)0c12 \rightarrow [Pd@SP2](\leftarrow [Br-])(\leftarrow P(C(C)(C)C)(C)(C)C)C(C)(C)C) \leftarrow c1ccc$ numbers of confs 6

Calculating Energies

- GFN2 xTB:
 - Geometry Optimization
 - Initial Energies

DFT:

- Single point on xTB structures
- Geometry optimization on the lowest energy conformer

Reaction Energies

- Energy difference between reactant and product:
 - Approximating ground state by choosing the lowest energy conformer
- Mapping the energies from unique smiles to 1step to get reaction energies
- Choosing reaction energy interval to pick input for the next step
 - Cycle starting over again

Overview Meta-MD Simulations 1 Step Reactions SMILES to XYZ Calculating Energies Reaction Energies Next Steps

Next Steps

- Evaluate energies:
 - Compare to article
 - Where to cut
- Smaller reaction adding manual:
 - Halide leaving
 - Tautomers
- Transition States:
 - Reaction barrier?

Thank you for listening!

