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Problem

• In cheminformatics we often work with confidential data

• Open science in machine learning is important for collaboration and innovation1,2

• Can we still make our trained models publicly available?
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Research question

• How much information about the training data can be identified when you make a 
model public?

• Here we look at neural networks trained on different tasks for drug discovery

• Black-box setting (no access to weights)

P(Y=1|     )= 0.8
Train(Data)Confidential 
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Approach

• To see how much of the training data could be identified, we used membership 
inference attacks (MIA), which are a widely used method for privacy assessment1,2,3 
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Approach

• We used two different state-of-the-art attacks (LiRA1 and RMIA2)

• They rely on having data from a similar distribution to train so-called 
shadow models

Shadow model predictions for
from shadow models trained on Di

Distribution of predictions for
from shadow models trained on Di ∪ {     }

Target model 
prediction of  
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Datasets

• 4 datasets (all binary classification tasks)

Dataset Size [# molecules] Class imbalance [% Positives]

Ability to cross blood-brain barrier (BBB)1 1,909 76

Mutagenicity prediction (Ames)2 7,255 54

DEL enrichment for carbonic anhydrase IX binding (DEL)3 108,528 4.9

hERG inhibition (hERG)4 306,341 4.5
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Models

• MLPs on different molecular representations

• ECFPs

• MACCS keys

• RDKitFP

• Message passing neural networks (graph)

• Transformer with CNN (SMILES)2

1
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Results

• Low false positive rates (FPRs) for identifying 
training data members are most relevant from 
a privacy perspective1

• Identifying training data is consistently possible

FPR=0:
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Results

• Could you combine the attacks to get even more information?

• Overlap between the attacks:
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Results

• Minority class is identified more

• Often most important structures
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Example case study

• Model trained on ECFP4 for predicting 
blood-brain barrier crossing

• 23 of 859 training structures identified 
at FPR=0 with LiRA

• 21 of the 23 structures were from the 
minority class

• Combining it with RMIA allowed 
identifying 53 structures at FPR=0
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Conclusion

• It is consistently possible to identify parts of the training data, even at FPRs as low as 0 
(under some assumptions)

• Combining both attacks allows getting even more information about the training data

• Minority class molecules are easier to identify

• Message passing neural network has the least information leakage

• More information: https://doi.org/10.48550/arXiv.2410.16975

https://doi.org/10.48550/arXiv.2410.16975


Thank you.
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Model classification performance
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