

Chemography applications to drug design: from (ultra)large libraries analysis to de novo design of molecules and reactions

Dragos Horvath Gilles Marcou Fanny Bonachera Alexandre Varnek

University of Strasbourg

Novartis, 9th of February 2023

Chemography

- ~10⁹ compounds are physically available
- $< 10^{26}$ structures are stored in proprietary DBs
- $\sim 10^{33}$ drug-like molecules could be synthesized *

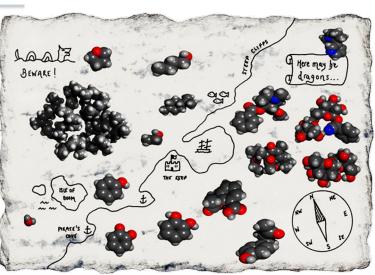
J. Comb. Chem. 2001, 3, 157-166

Articles

Chemography: The Art of Navigating in Chemical Space

Tudor I. Oprea*,[†] and Johan Gottfries[‡]

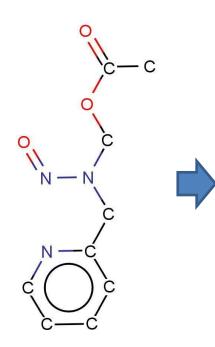
EST Lead Informatics and Medicinal Chemistry, AstraZeneca R&D Mölndal, S-43183 Mölndal, Swed



* P. Polischuk, T. Madzidov, A. Varnek, J. Comp. Aided Mol, Des. 2013, 27, p. 675-679

Encoding chemical structures by molecular descriptors

Molecular graph

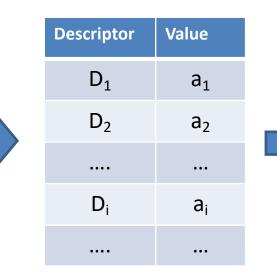


Descriptors

Constitutional descriptors Ring descriptors Topological indices Walk and path counts Connectivity indices Information indices 2D matrix-based descriptors 2D autocorrelations Burden eigenvalues P_VSA-like descriptors ETA indices Edge adjacency indices Geometrical descriptors 3D matrix-based descriptors 3D autocorrelations

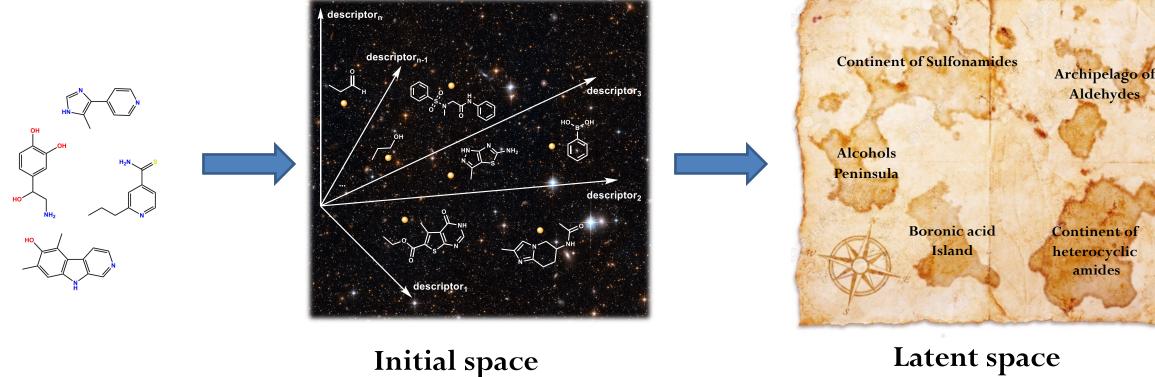
••••••

Descriptor vector



> 5000 types of descriptors are used

Data visualization: dimensionality reduction problem

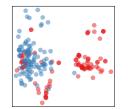


(N-dimensional)

Latent space (2-dimensional)

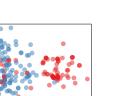
Dimensionality reduction methods

Acetylcholinesterase dataset (DUD): 100 actives and 100 inactives

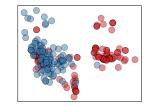


Multi-Dimensional Scaling

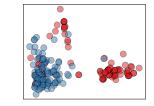
PC 1 (21.1%) PCA



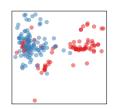
Canonical Correlation Analysis



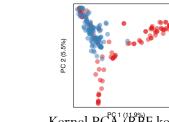
Independent Component Analysis



Exploratory Factor Analysis

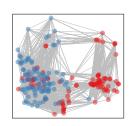


Sammon map

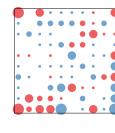


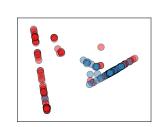
PC 2 (14%) PC 1 (32.6%)

Kernel PCA (polynomial kernel)

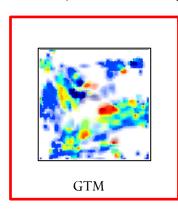


Isomap



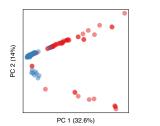


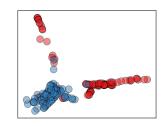
Locally Linear Embedding



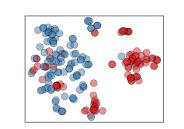
6

Kernel PCA (RBF kernel)

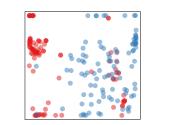




Laplacian Eigenmaps

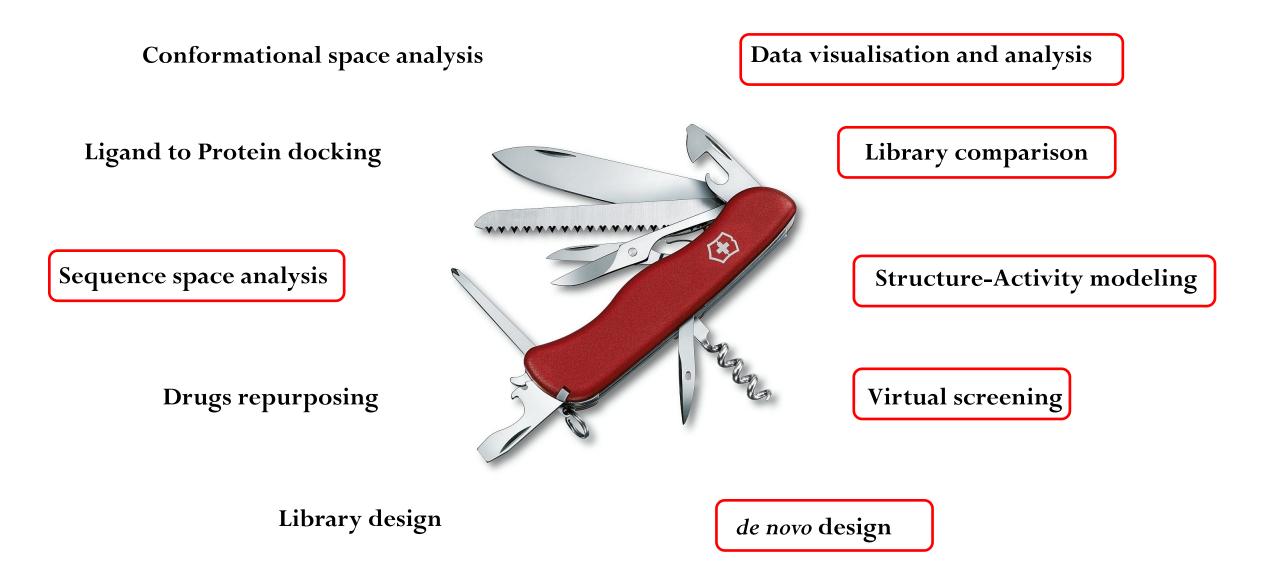


t-SNE

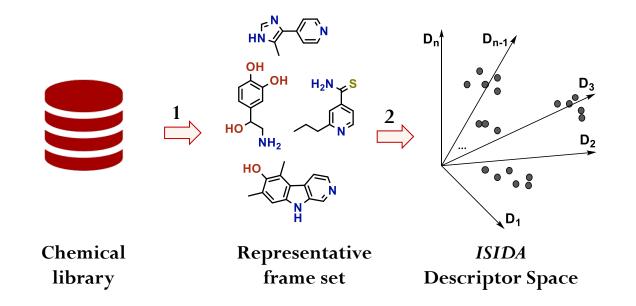


Autoencoder dimensionality reduction

Generative Topographic Mapping : areas of application

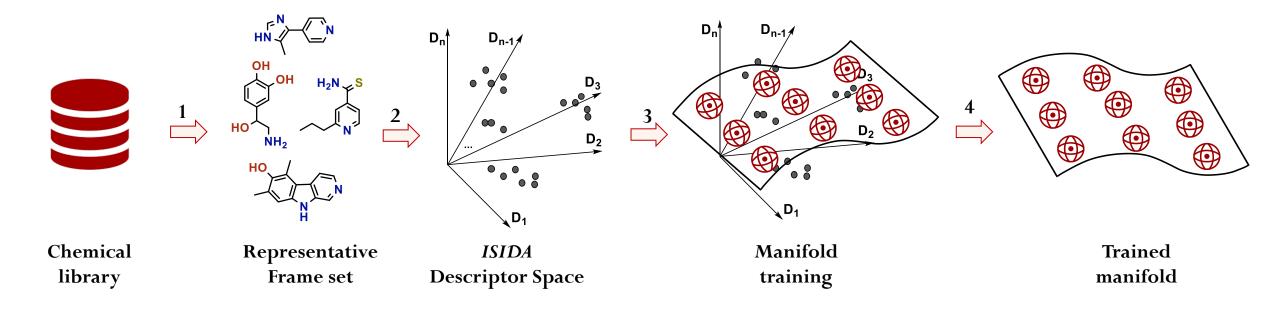


Generative Topographic Mapping (GTM)



- 1. Frame set selection
- 2. Molecules are represented in *n*-dimensional descriptor space

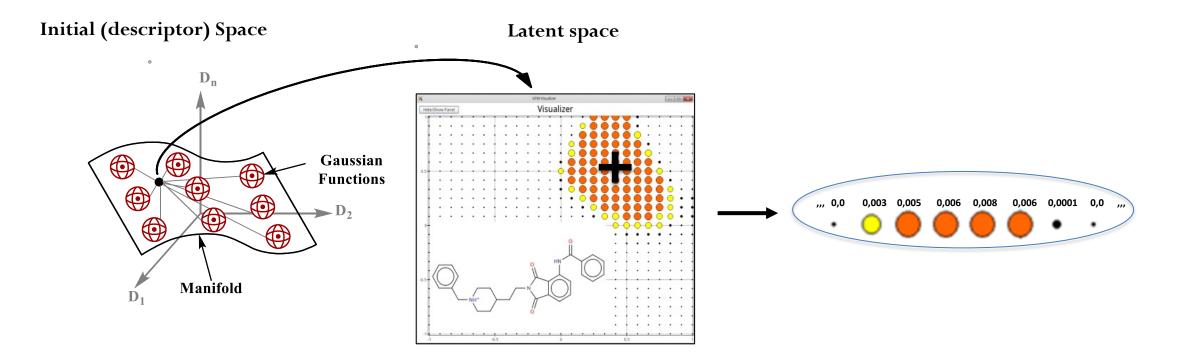
Generative Topographic Mapping (GTM)



- 1. Frame set selection
- 2. Molecules are represented in *n*-dimensional descriptor space
- 3. A flexible 2D *manifold* is fitted to the data
- 4. Coordinates of the manifold are saved

Fuzzy nature of GTM

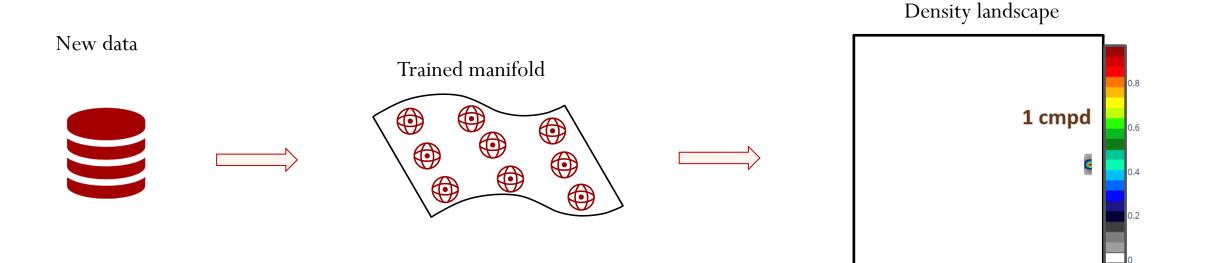
- GTM generates a data "probability" distribution in both initial and latent data spaces.
- Initial space : ensemble of Gaussian functions situated in the nodes of a grid superposed with the manifold
- Latent space: fuzzy projection on the nodes of flattened grid



 $Molecule \rightarrow \text{Responsibility} (node residence « time ») vector of dimension <math>N_{nodes}$

Density landscapes

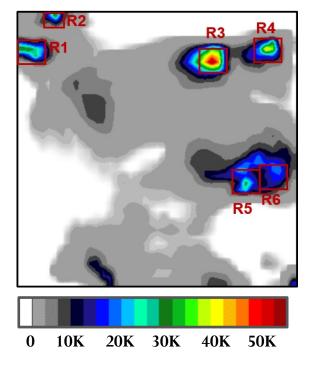
- display the compounds distribution in the chemical space
- spotting the regions that are under or overpopulated



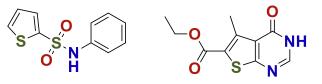
Library \rightarrow Cumulated Responsibility vector

Chemical analysis with density maps

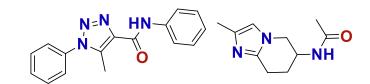
Every populated zone can be associated with some "chemotype".



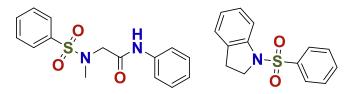
Lead-Like ZINC-In-Stock (3.2M cmpds) R1: Thiophenes



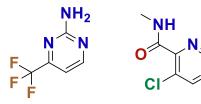
R3: Heterocyclic amides



R4: Benzensulphonamides



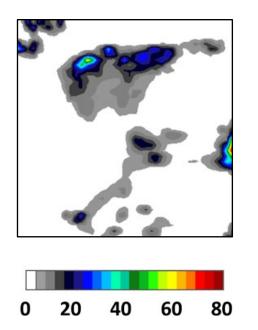
R6: Halloginated heterocycles



Br O HN-

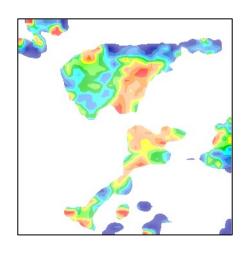
GTM Landscapes

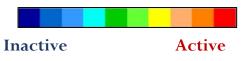
Density landscape



Colored according to the cumulated responsibilities in each node

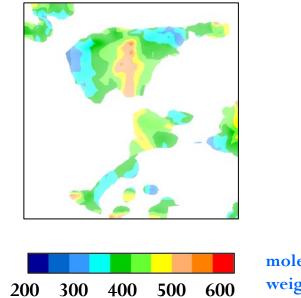
Class landscape





Colored according to the resident class ratio weighted by responsibility

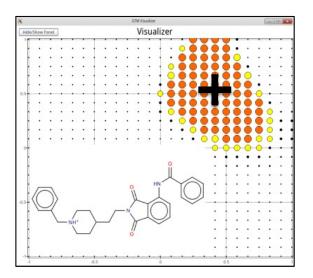
Property (activity) landscape



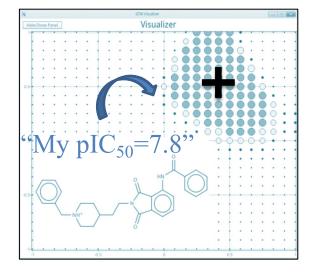
molecular weight

Colored according to the weighted average of selected activity (property)

GTM Nodes act as Knowledge Repositories...



Increment "node pIC₅₀" by $R_n \times 7.8$



... and, after all "training" compounds contributed their increments,
normalize node values by the total cumulated responsibility in there!

14

$$\langle P \rangle_n = \frac{\sum_m P_m R_n(m)}{\sum_m R_n(m)}$$

- Low-density nodes are not trustworthy!
- Mixed nodes (harboring residents with widely diverging properties) are not trustworthy!

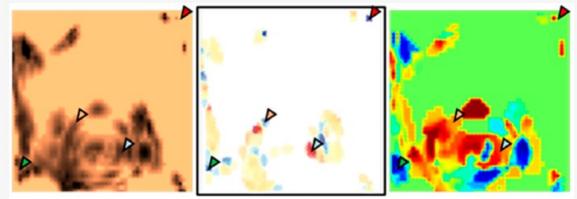
for prediction, copy from node back to molecule: $P_{pred}(m') = \frac{\sum_{n} \langle P \rangle_n R_n(m')}{\sum_{n} R_n(m')} = \sum_{n} \langle P \rangle_n R_n(m')$

pubs.acs.org/jcim

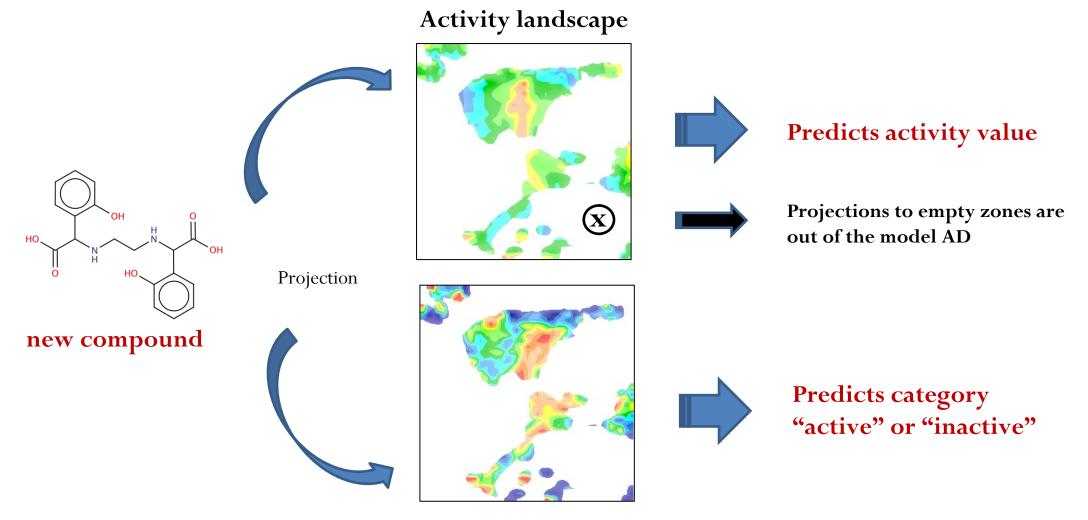
Trustworthiness, the Key to Grid-Based Map-Driven Predictive Model Enhancement and Applicability Domain Control

Dragos Horvath,* Gilles Marcou, and Alexandre Varnek

ABSTRACT: In chemography, grid-based maps sample molecular descriptor space by injecting a set of nodes, and then linking them to some regular 2D grid representing the map. They include self-organizing maps (SOMs) and generative topographic maps (GTMs). Grid-based maps are predictive because any compound thereupon projected can "inherit" the properties of its residence node(s)—node properties themselves "inherited" from node-neighboring training set compounds. This Article proposes a formalism to define the trustworthiness of these nodes as

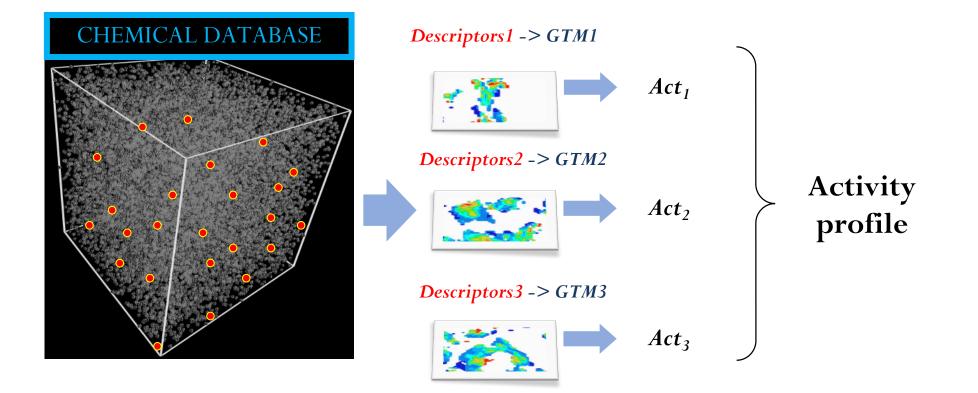


GTM Landscapes as predictive models



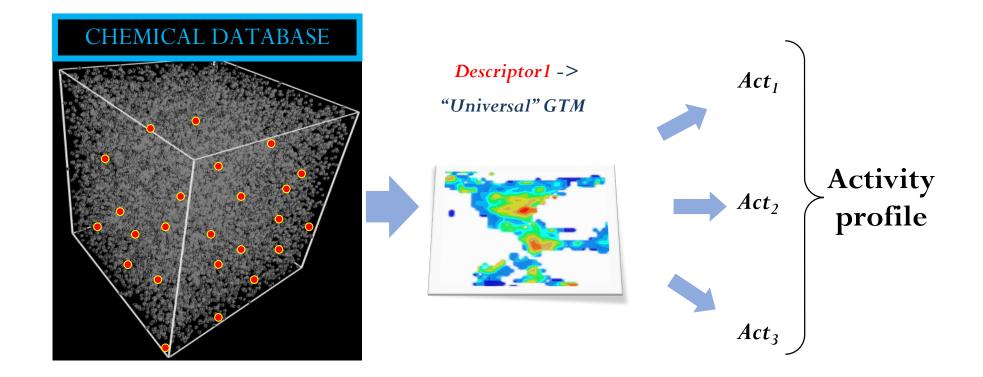
Class landscape

GTM-based pharmacological profiling: single-task mode



Each GTM_i predicts only one activity (Act_i)

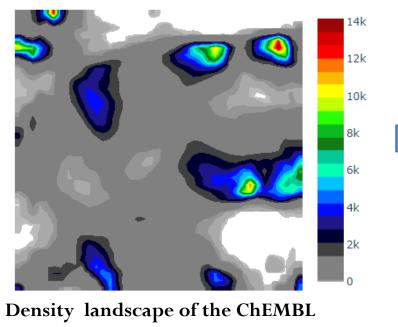
GTM-based pharmacological profiling: multi-task mode



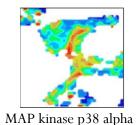
Universal GTM able to predict simultaneously several Act_i

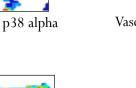
« Universal » map

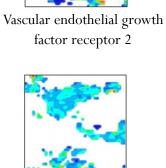
- Defines a frame of biological relevant chemical space (ChEMBL database)
- Based on ISIDA descriptors tuned with respect to the modelled activities
- Predicts of > 700 biological activities



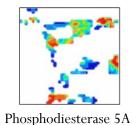
database (1.7 M cmds)



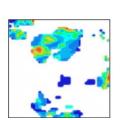




Serine/threonine-protein kinase AKT



Cyclin-dependent kinase 2

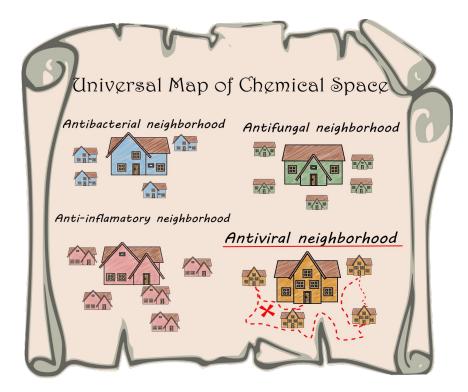


Adenosine A2a receptor

Active

Inactive

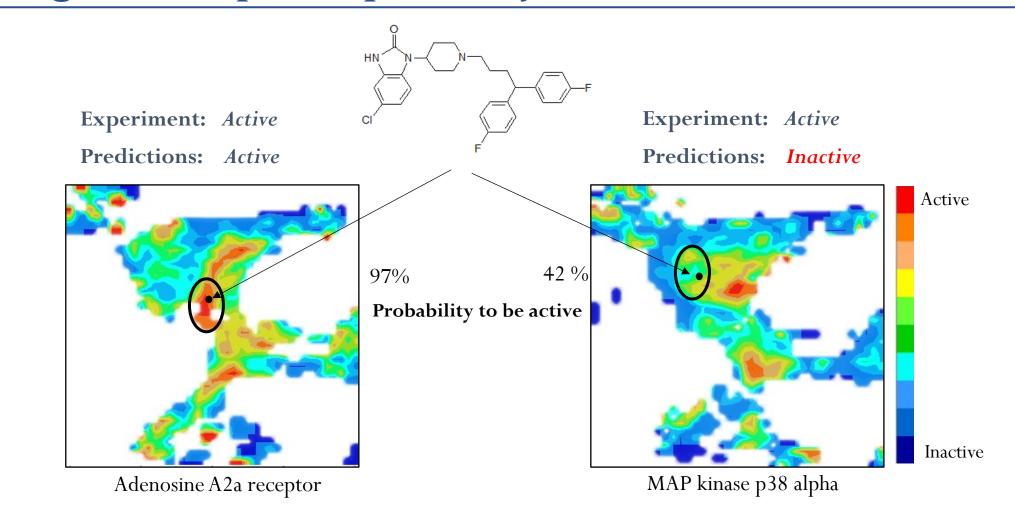
« Universal » map of Chemical Space



A map of a chemical space is expected:

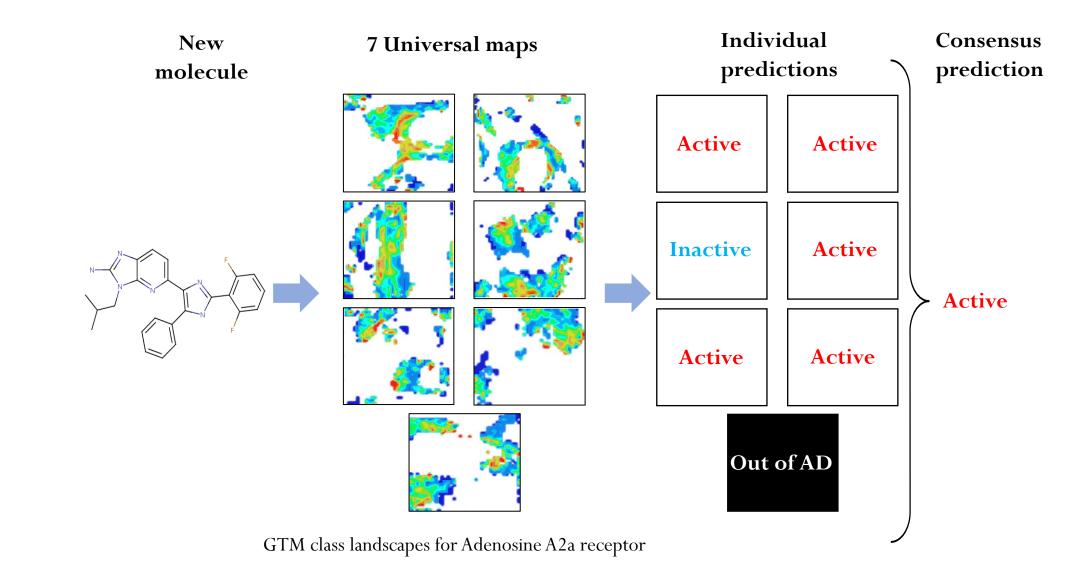
- to accommodate the variety of known chemotypes;
- to distinguish between different activity classes;
- to separate actives and inactives within a given activity class
- to be *neighborhood behaviour (NB)* compliant, e.g., molecules grouped together are expected to display similar activities

One single descriptors space may not be sufficient !



One descriptor space may not be sufficient to correctly separate actives/inactives for all targets

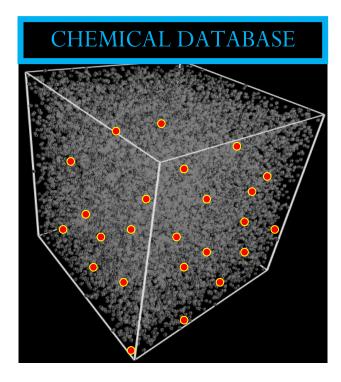
Chemical multiverse: ensemble of several optimal descriptor spaces



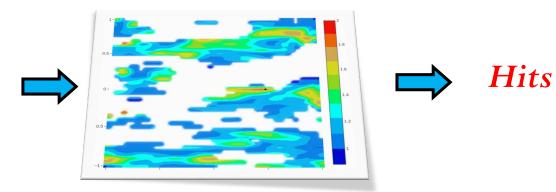
GTM: applications

- Virtual screening
- Analysis of large chemical collections
- Drug resistance analysis
- AI-driven design of new molecules and reactions

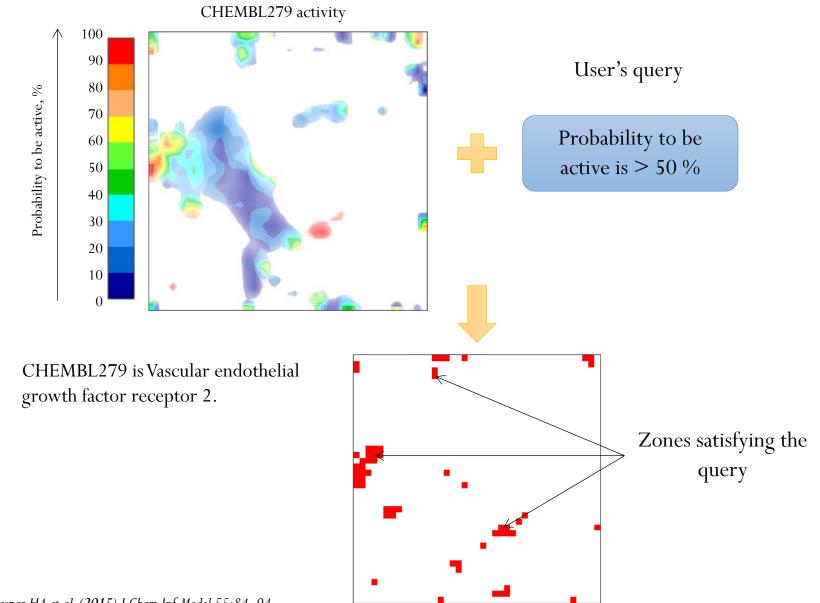
Universal maps: application to virtual screening



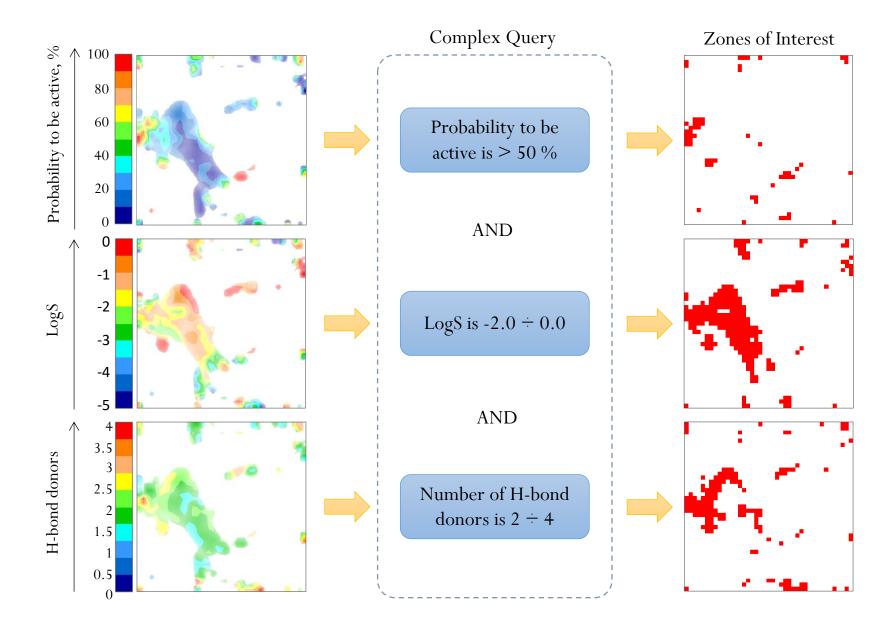
GTM activity or class landscape



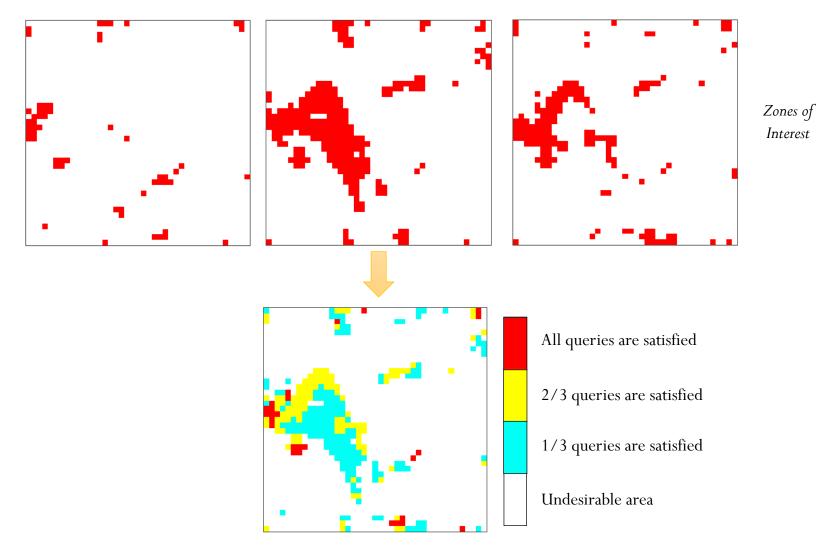
Constrained Screening: Zones of Interest



Constrained Screening



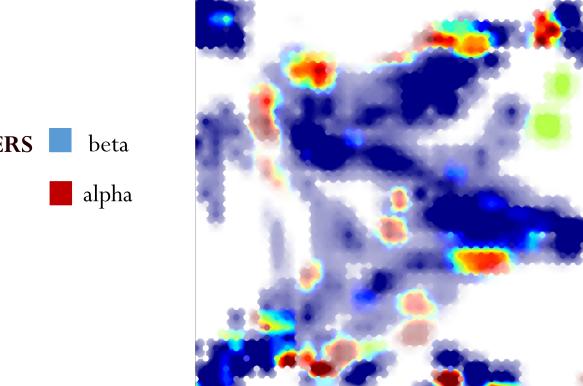
Constrained Screening



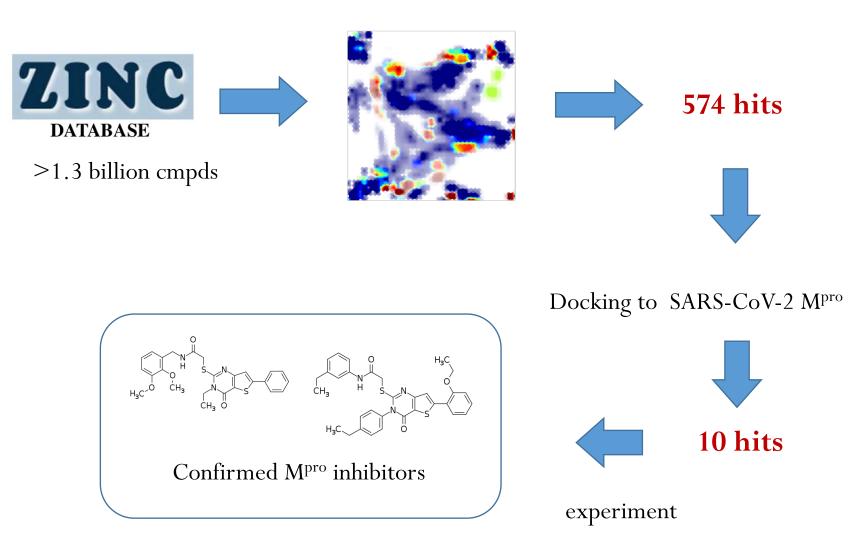
Query Landscape

Discovery of new SARS-Cov2 agents

- SARS-COV Relevant Antiviral Space covers *alpha* (269 molecules) and *beta* (1308) genus of CoVs
- The data for SARS-COV2 was not available at the very beginning of the COVID19 pandemic.



Discovery of new SARS-CoV-2 M^{pro} inhibitors Space



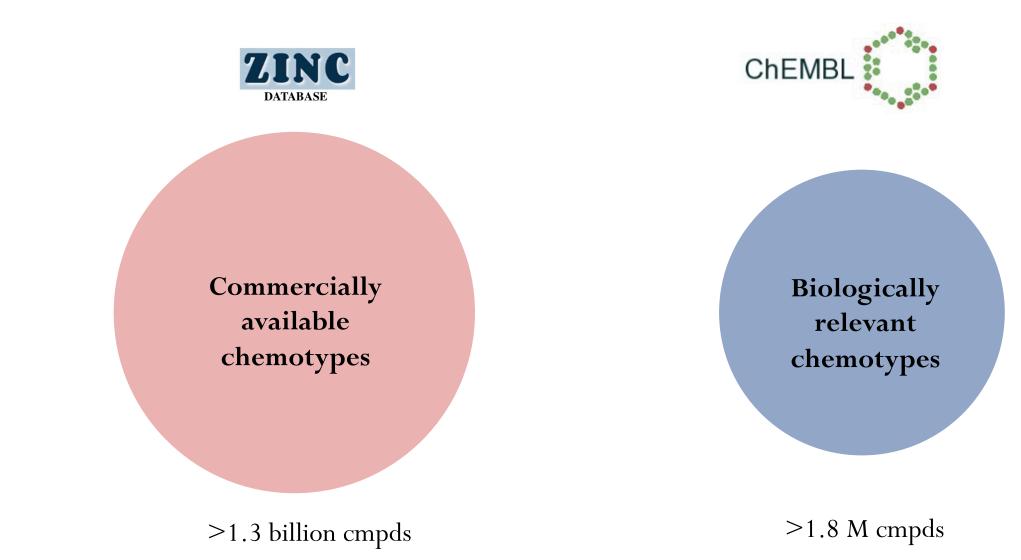
D. Horvath et al. *Molecular Informatics*, 2020, **39**(12), 2000080 M.Yu. Zakharova et al *Frontiers in Pharmacology*, 2021, **12**, 773198

Comparative analysis of (ultra)large chemical libraries

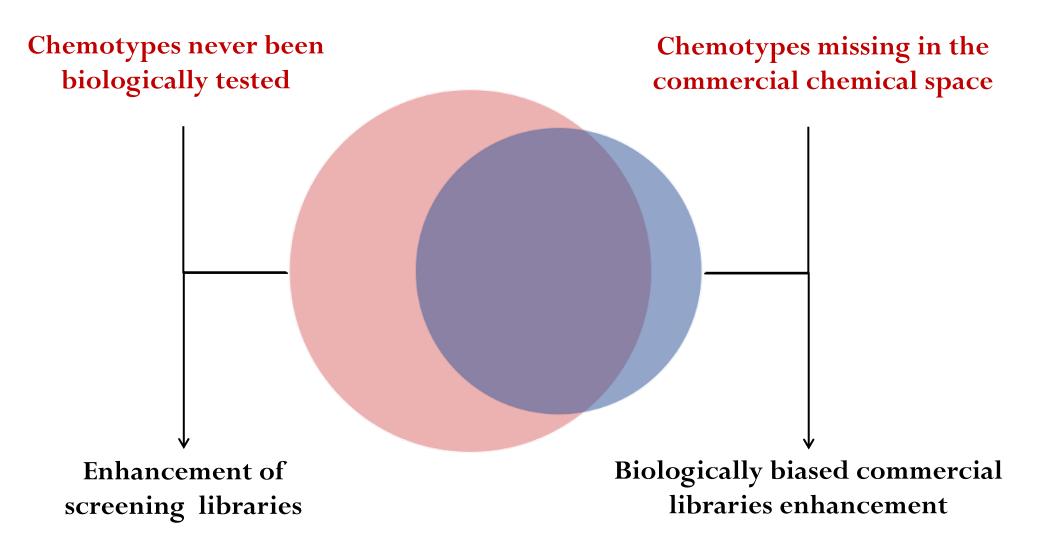
Case studies:

- ChEMBL / ZINC (1B structures)
- Proprietary collection reshaping
- Selection of optimal DELs

Commercial vs Biologically relevant data

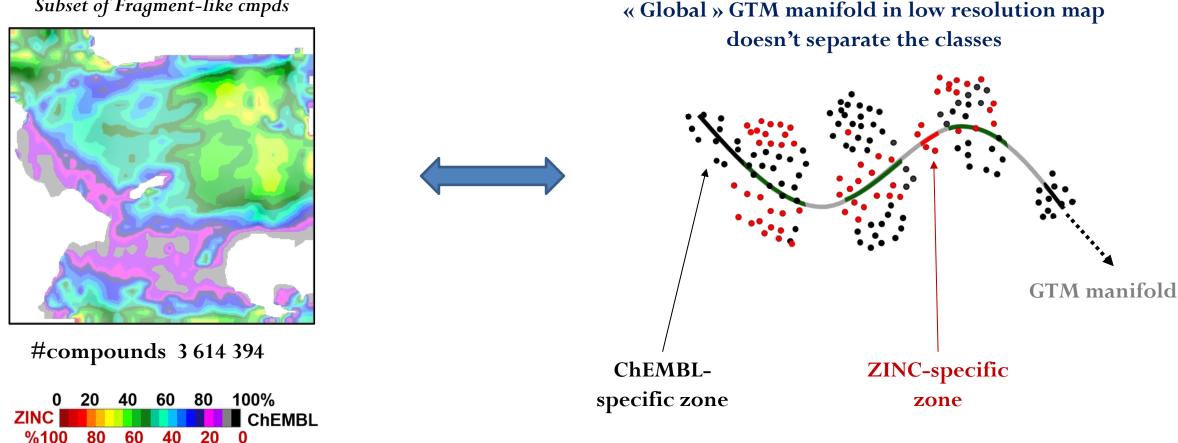


Commercial vs Biologically relevant data



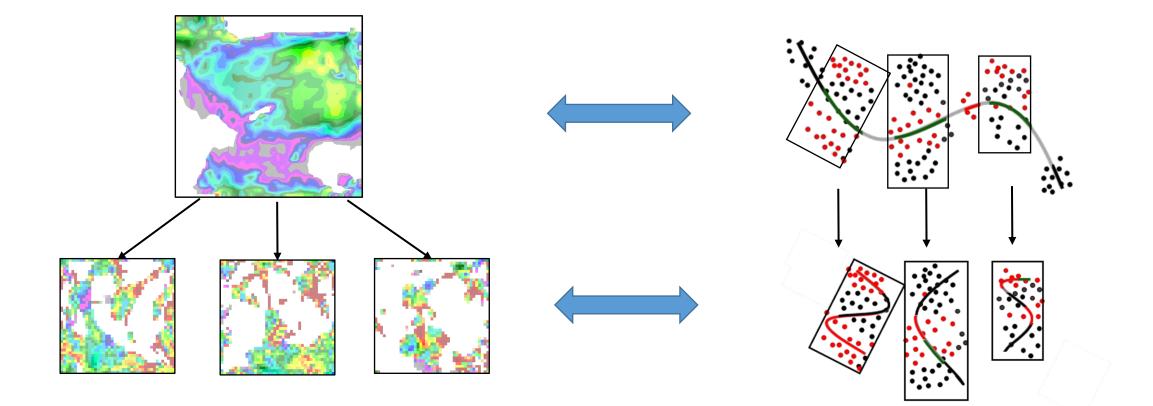
GTM class landscape for library comparison

Subset of Fragment-like cmpds



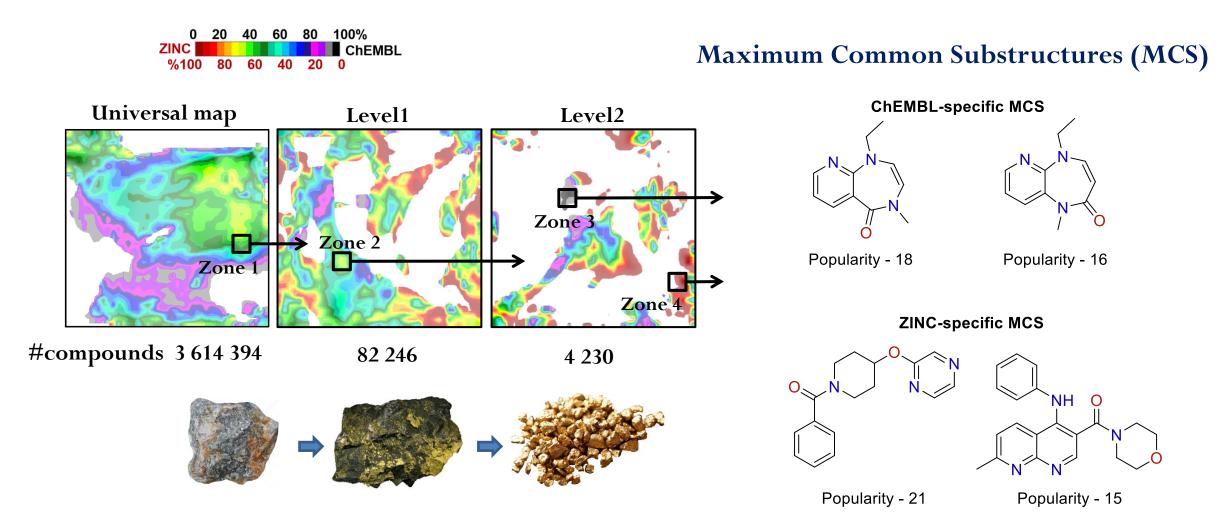
Low resolution of the map doesn't allow to identify the library-specific zones

Hierarchical GTM (Zooming)

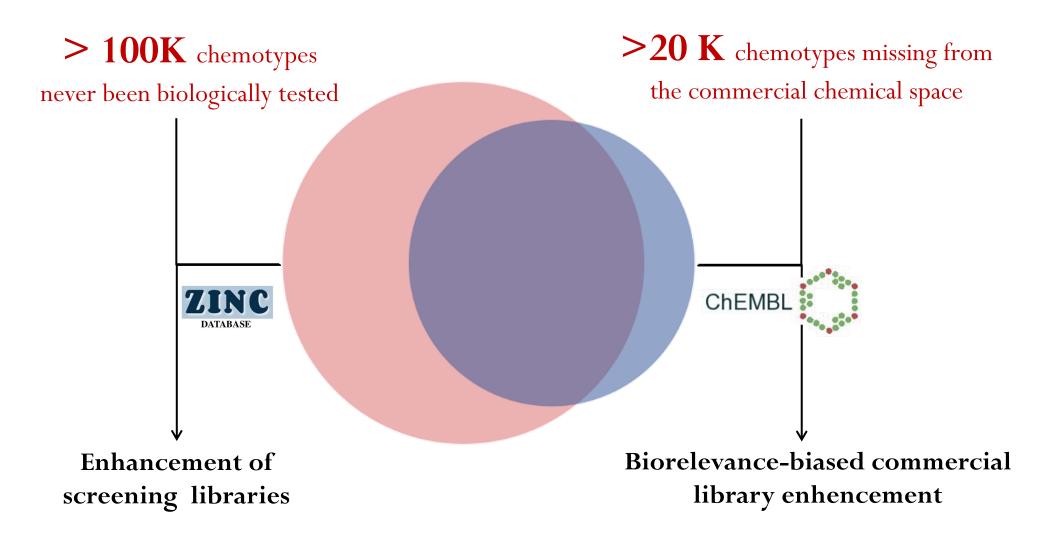


New higher resolution maps better separate the library members

Hierarchical GTM navigation of the chemical space



Commercial vs Biologically relevant data



Chemical Library Enrichment

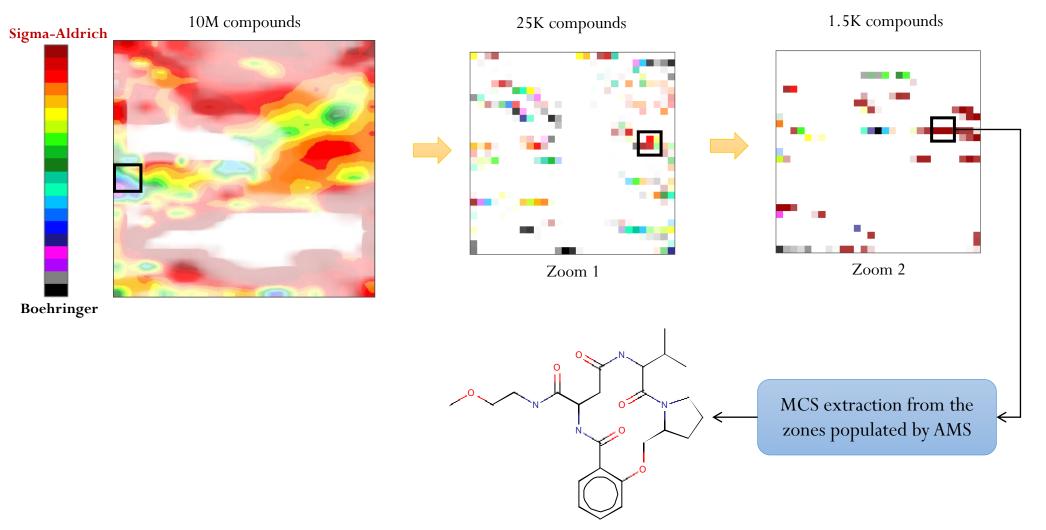
BI intended to diversify its library by purchasing compounds from the Aldrich-Market Select (AMS) Database

Goal: selection of the AMS compounds with

new scaffolds/substructures

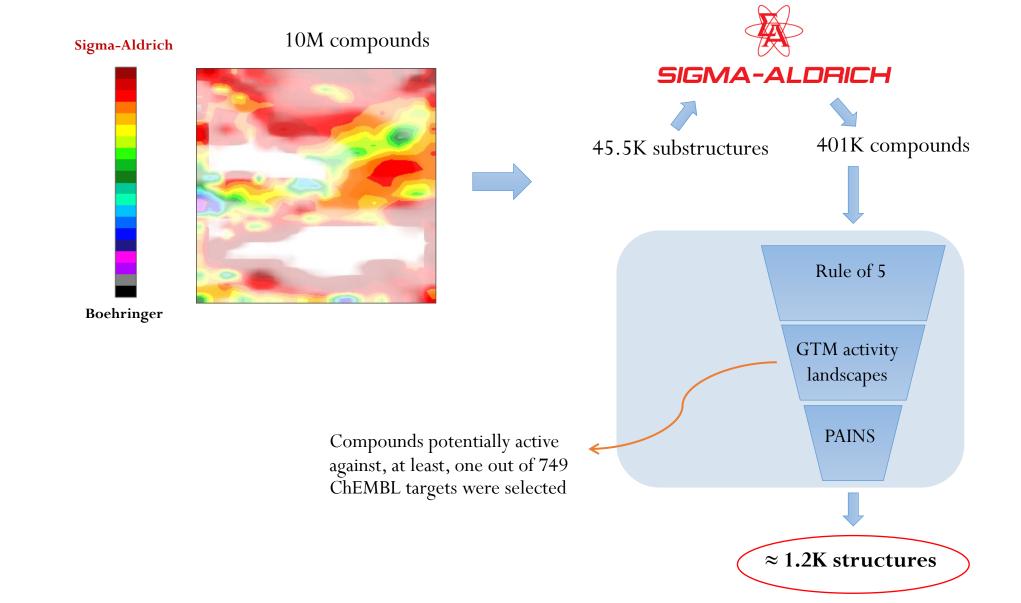
PhD project of Arkadii Lin

Chemical Library Enrichment

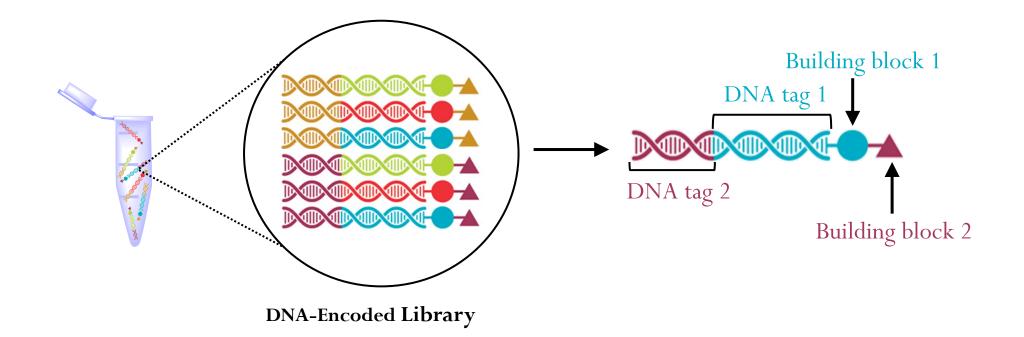


New substructure from Sigma-Aldrich

Chemical Library Enrichment



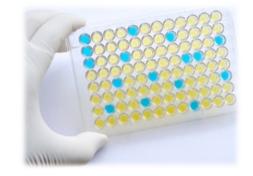
Generation and analysis of general-purpose DELs



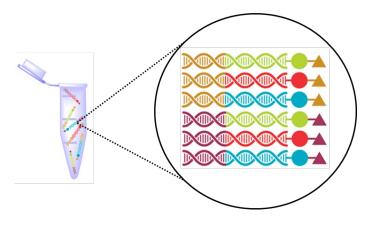
DNA-Encoded Library: combinatorial collection of small molecules covalently attached to the short DNA tag

DEL challenge

Screening libraries



DNA-encoded libraries

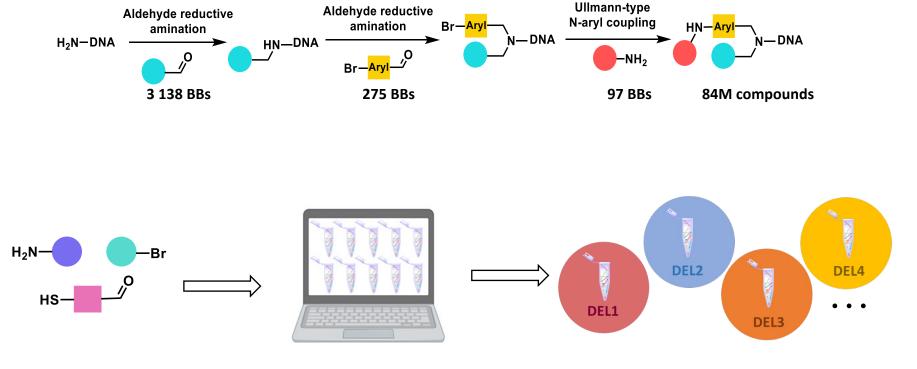


Parallel screening in separate "wells"

Individual compounds may be cherrypicked Simultaneous screening in a single tube

Entire library as an object must be considered

Selection of an "optimal" DEL

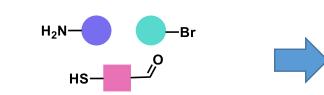


Commercially available BBs

Thousands of DELs containing billions of molecules

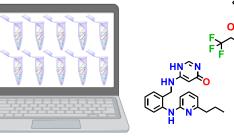
How to select an "optimal" DEL for a given task (e.g., primary screening)?

Selection of DEL the best covering a reference library (ChEMBL) chemical space

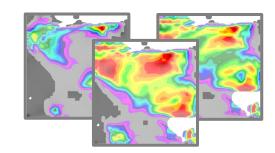


79.000 Building blocks from eMolecules

eDesigner tool

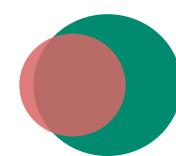


2500 DELs designed (size: 1M-1B)2.5B compounds generated (1M compounds per DEL)



 $\begin{array}{c} \textbf{2500} \text{ comparative landscapes} \\ \text{DEL}_i/\text{ChEMBL} \end{array}$

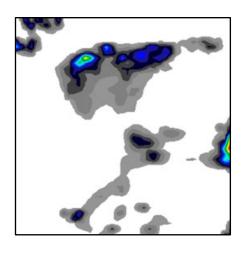
Selection of highly scoring DELs

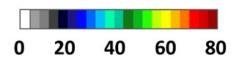


 DEL_i / ChEMBL coverage score calculation for each map

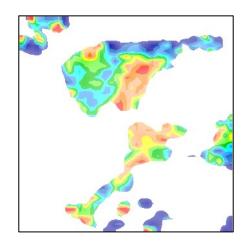
Encoding a library by a vector using GTM landscapes

Density landscape



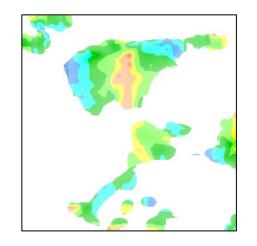


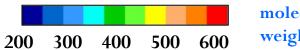
Class landscape



Inactive Active

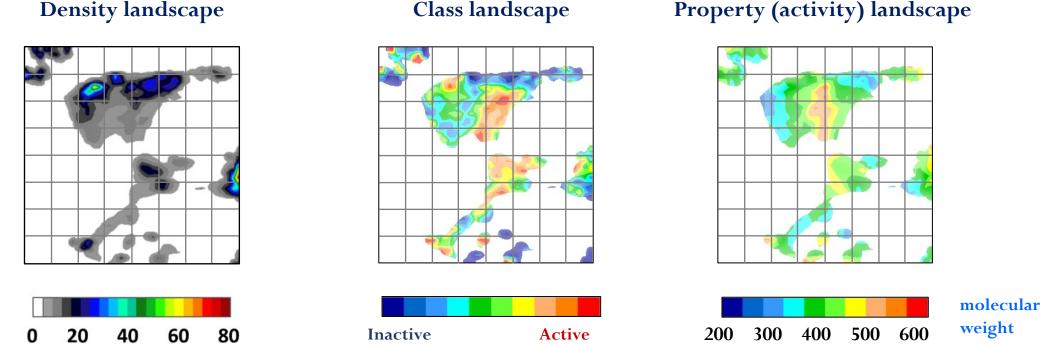
Property (activity) landscape





molecular weight

Encoding a library by a vector using GTM landscapes



Density landscape

Cumulated Responsibility Vector (CRV)

Class Modulated Responsibility Vector (**cCRV**)

Property Modulated Responsibility Vector (**pCRV**)

GTM-based metrics of chemical libraries similarity

Library encoding

1. Responsibility Patterns (RP), e.g. GTM "address labels" obtained from a discretized, coarse responsibility vector $\vec{R} = (12:0.003\ 36:0.51\ 37:0.48\ 77:0.007) \rightarrow \text{RP}=/36:5/37:5/$ Metric

 $RPcov(Lib1,Lib2) = \frac{N_{common}(RP_1 \cap RP_2)}{N_{total}(RP_1)}$

Pairwise *Lib1/Lib2*:

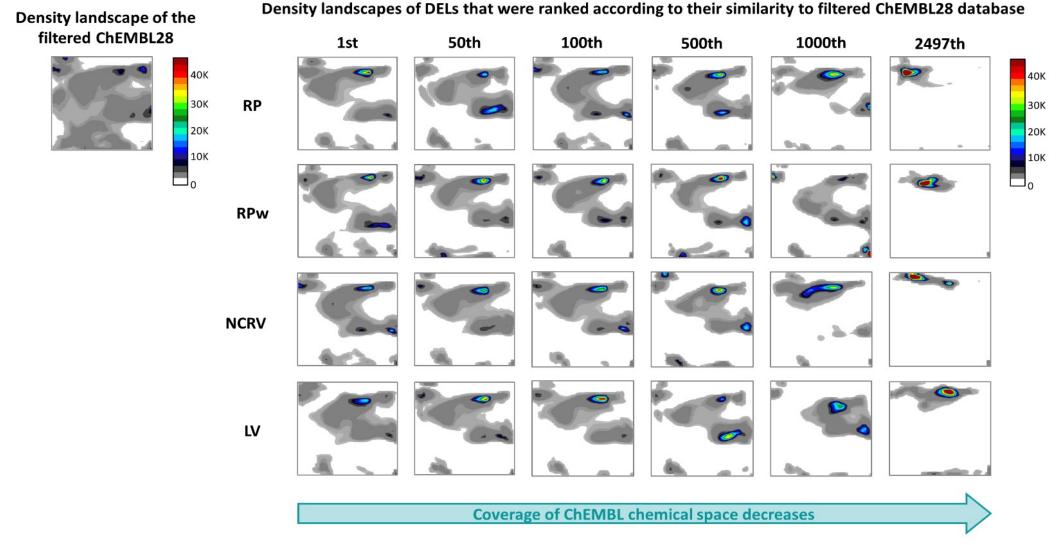
Tanimoto coefficient ($Vect_1 / Vect_2$)

Ensemble of libraries:

• meta-GTM built on $\{Vect_i\}$

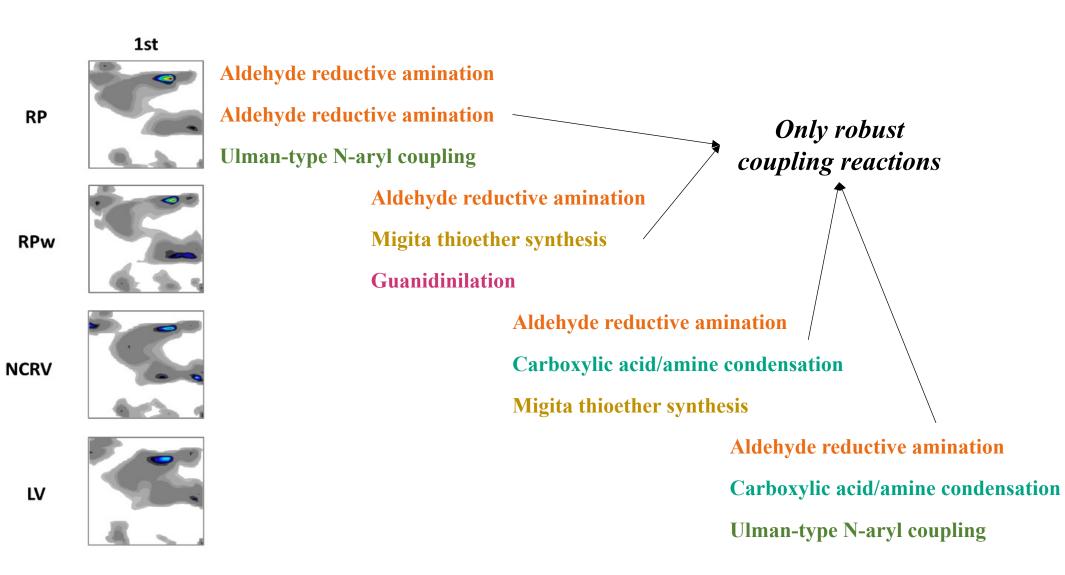
- 2. Cumulated Responsibility vectors
- 3. Property-modulated vectors
- 4. Library (class)-modulated vectors

ChEMBL28 / DEL similarity

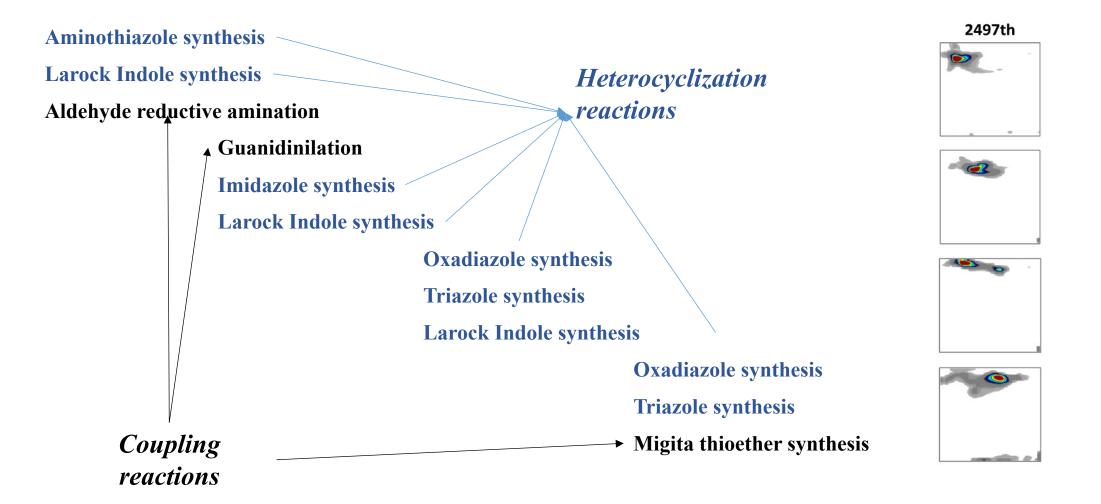


Irrespective of the metric, common density (overlap) is a key factor defining inter-library similarity

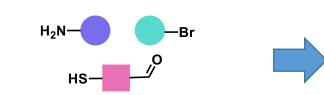
DELs with the highest similarity to ChEMBL



DELs with the lowest similarity to ChEMBL

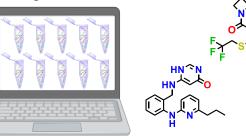


Selection of DEL the best covering a reference library (ChEMBL) chemical space

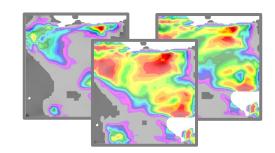


79.000 Building blocks from eMolecules

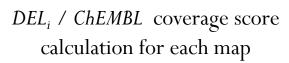
eDesigner tool



2500 DELs designed (size: 1M-1B)2.5B compounds generated (1M compounds per DEL)

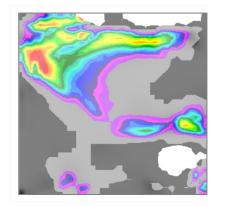


 $\begin{array}{c} \textbf{2500} \text{ comparative landscapes} \\ \text{DEL}_i/\text{ChEMBL} \end{array}$

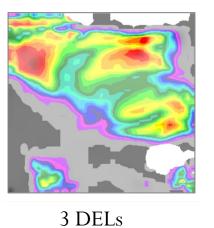


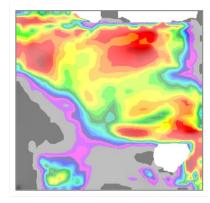
Selected DELs vs ChEMBL

0 10 20 30 40 50 60 70 80 90 100% DEL **ChEMBL** %100 90 80 70 60 50 40 30 20 10 0

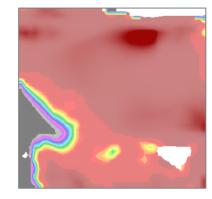


the best DEL

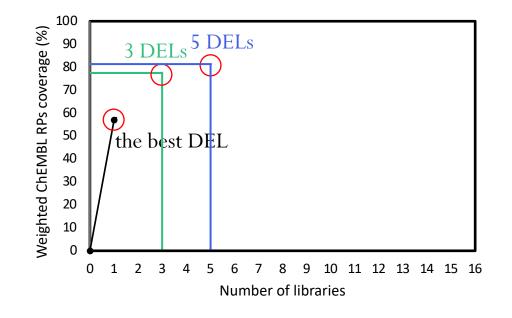




5 DELs



2500 DELs

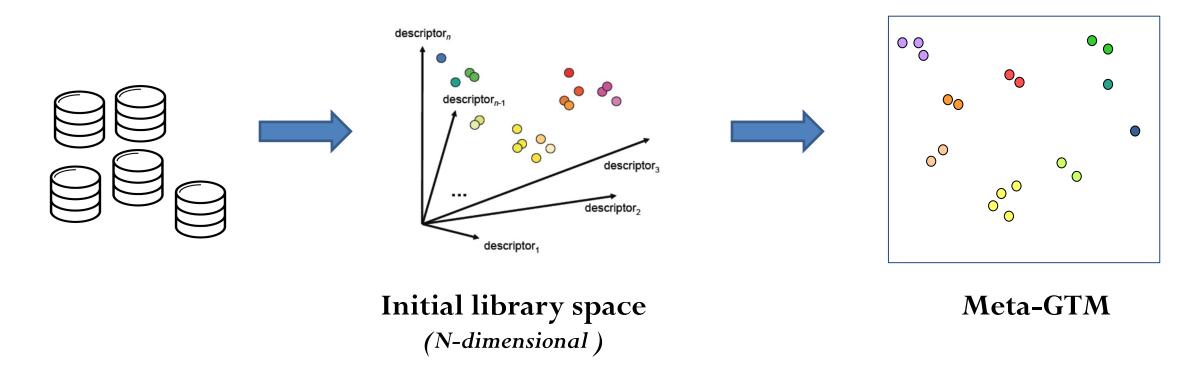


3 "platinum" DELs cover >80% of ChEMBL chemical space

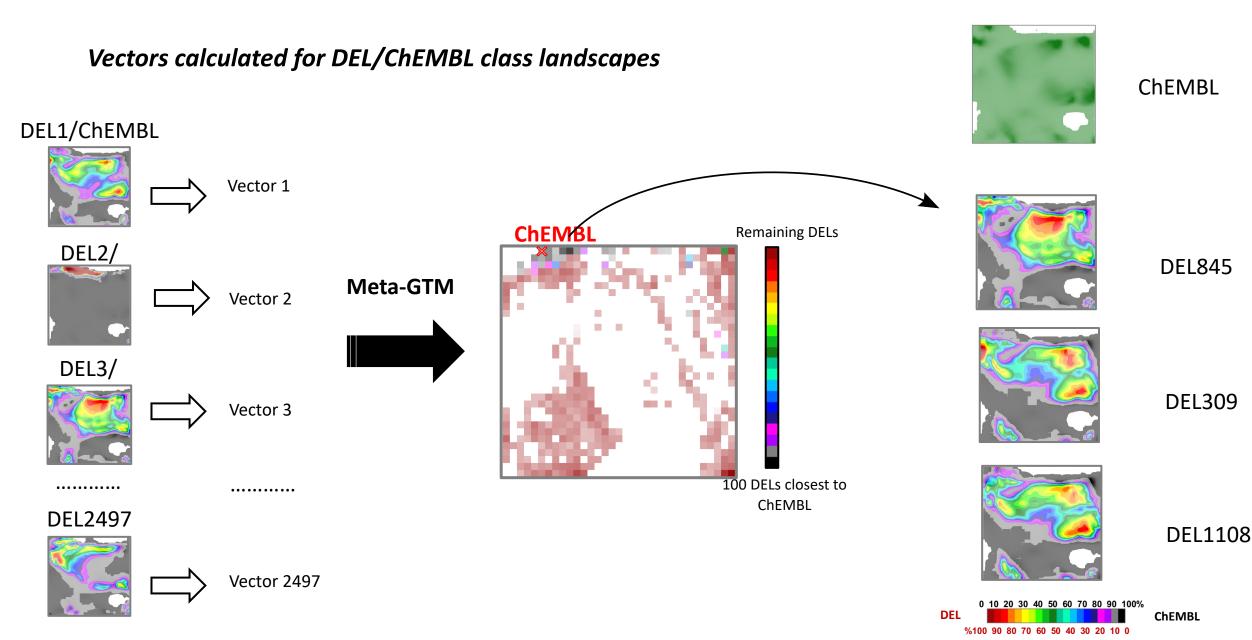
R. Pikalyova et al. Mol. Inf. 2022, 41, 2100289.

Meta-GTM: a compact visualization of library space

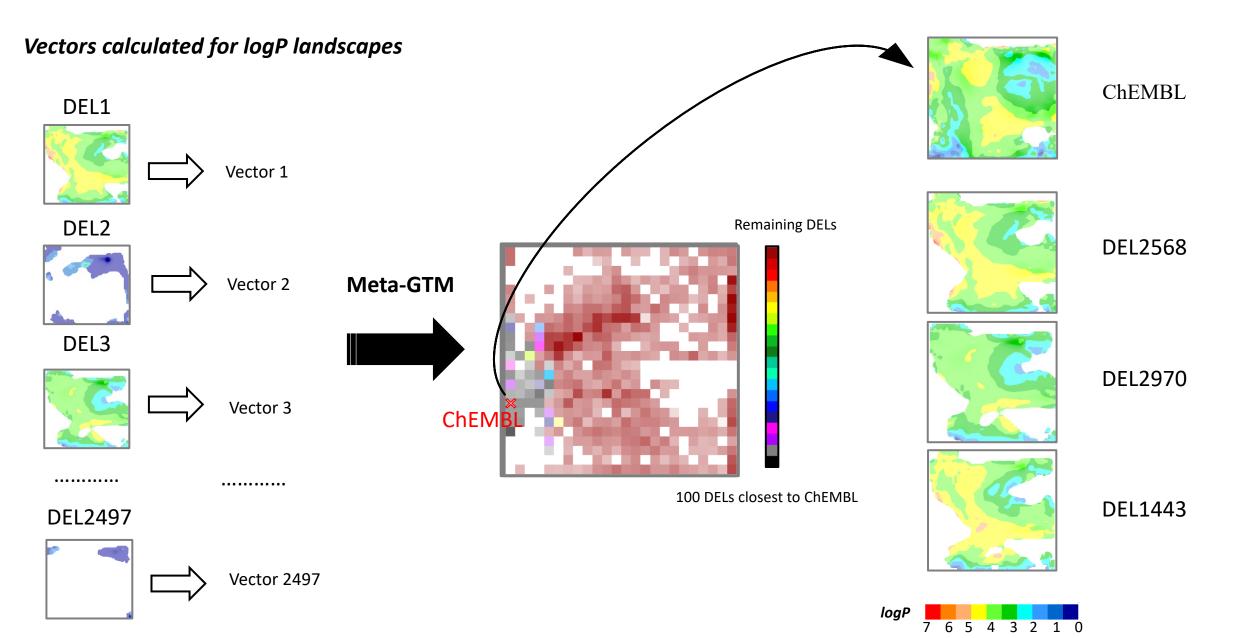
- GTM encodes a chemical library as a vector of descriptors (cumulated responsibilities, property or class modulated responsibilities) calculated from related landscapes
- This vectors can be used to build a meta-GTM where each data point represents a library



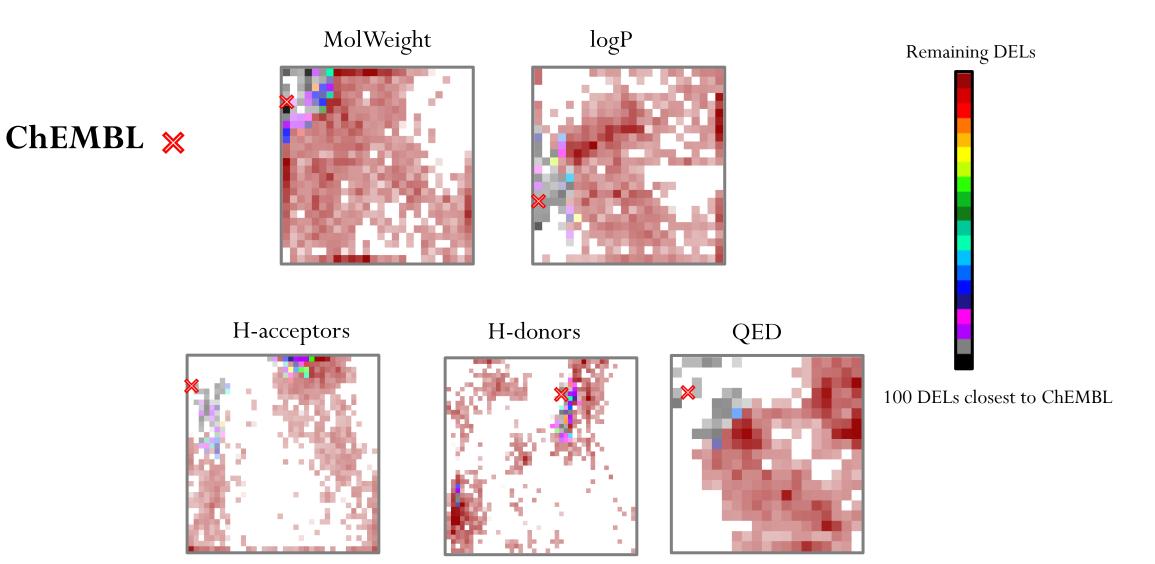
Meta-GTM built on reference library-modulated descriptors



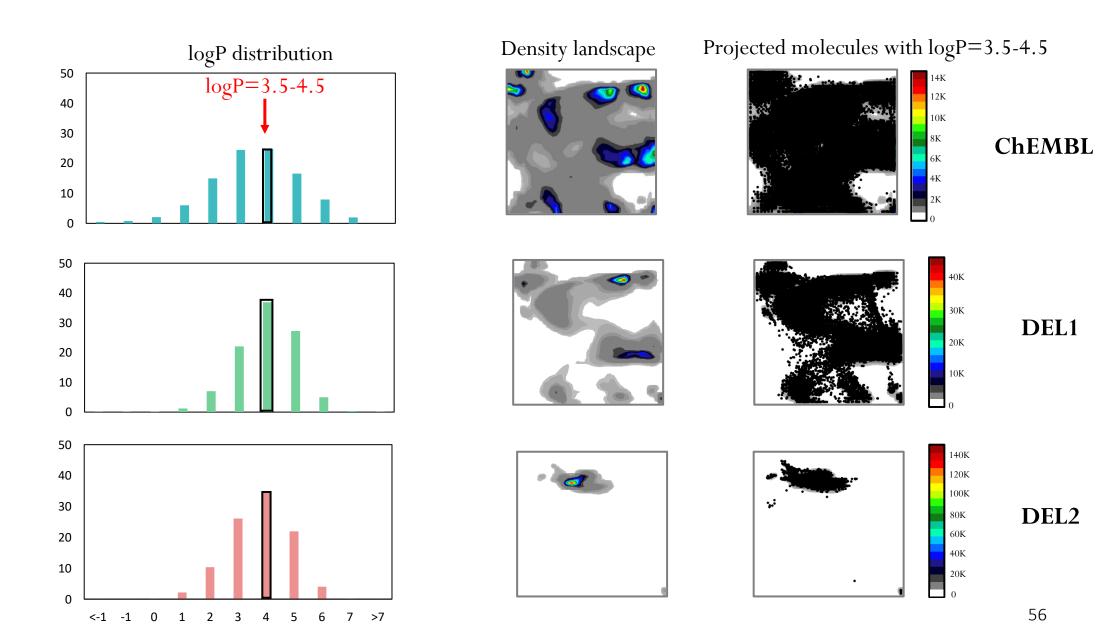
Meta-GTM built on property-modulated descriptors



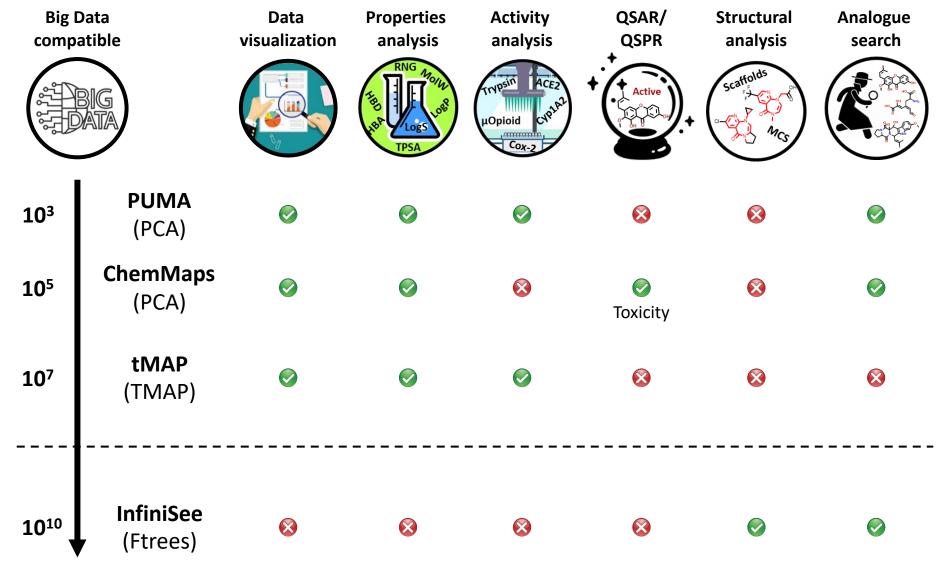
Meta-GTM built on property-modulated descriptors



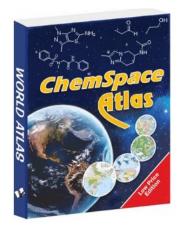
Linear vs chemographic property distribution



Online tools for Big Data analysis



Chemical space size

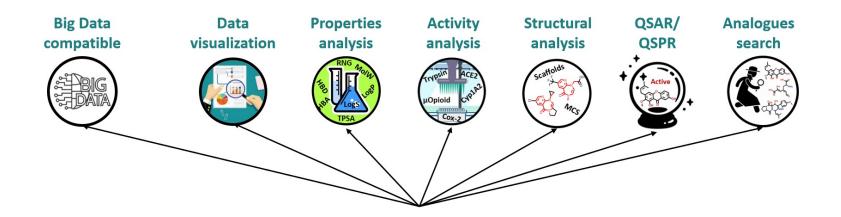


Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery

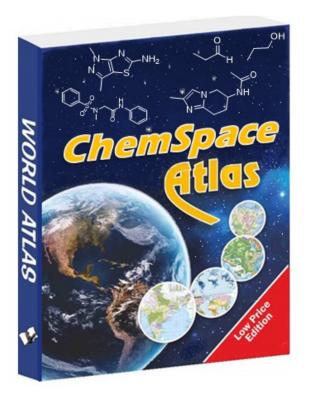
Yuliana Zabolotna, Fanny Bonachera, Dragos Horvath, Arkadii Lin, Gilles Marcou, Olga Klimchuk, and Alexandre Varnek*

Cite This: https://doi.org/10.1021/acs.jcim.2c00509

J. Chem. Inf. Mod., 2022, 62, 4537–4548



ChemSpace Atlas tool



Main features

- polyvalent tool based on the GTM Universal Maps
- accommodates > 1.5 billion compounds
- assembles > 40.000 hierarchically related maps of different scale

Main options

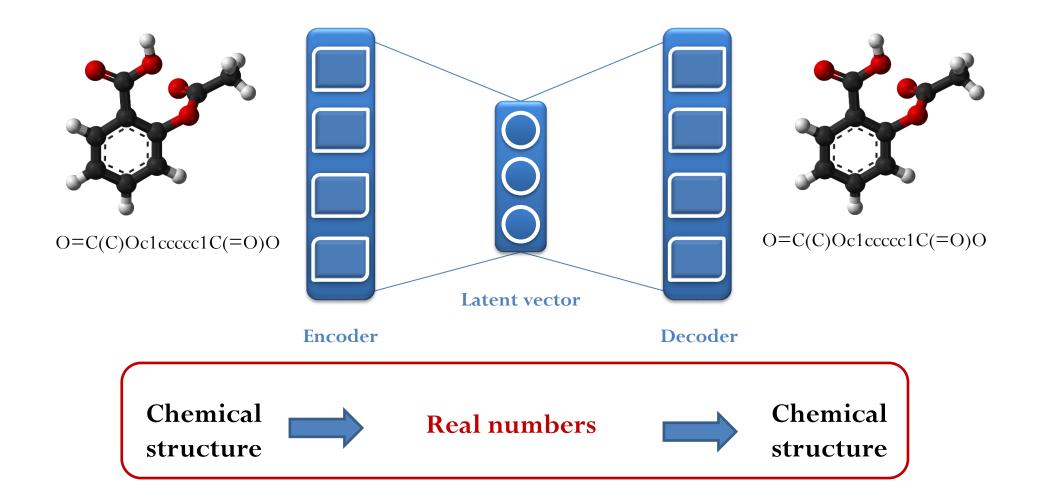
- Data visualization, search, subsets selection
- Automated extraction of Maximal Common Substructures
- Scaffold analysis
- Projection of new compounds
- Pharmacological profiling with respect to >700 biological targets

Libraries

- Screening Compounds
- Natural products and their analogues

De novo design of biological active molecules using Artificial Intelligence tools

Autoencoder performing SMILES reconstruction



dependence is a problem!

-CH₃

CH₃

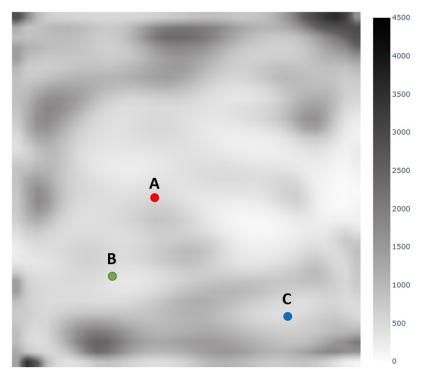
н

A: clcc(C(NC(C(OC)=O)CCSC)=O)c(-c2cccc2)cc1NCc1cncn1Cc1ccc(C)cc1 B: N(Cc1cncn1Cc1ccc(C)cc1)c1cc(-c2cccc2)c(C(=O)NC(C(OC)=O)CCSC)cc1 C: clcc(C)ccc1Cn1cncc1CNc1ccc(C(=O)NC(CCSC)C(OC)=O)c(-c2cccc2)c1

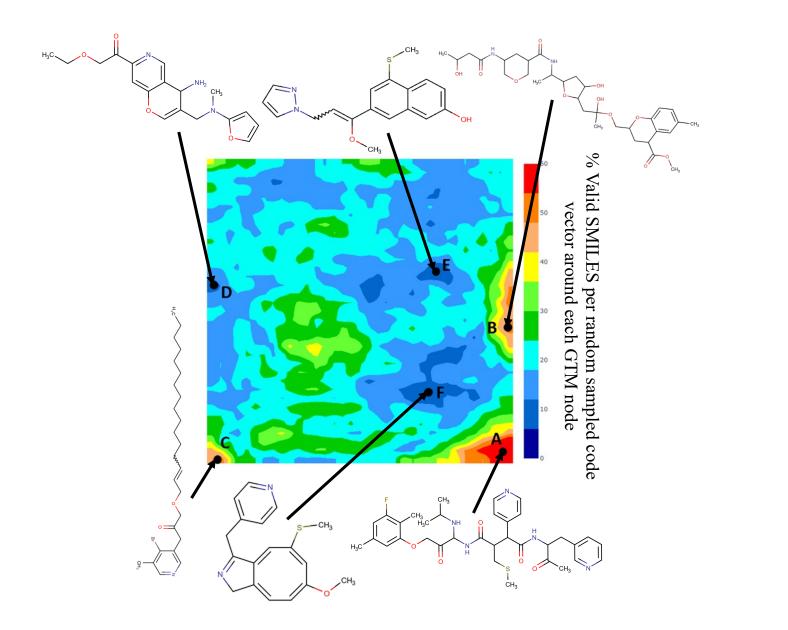
ÇH₃

н

11

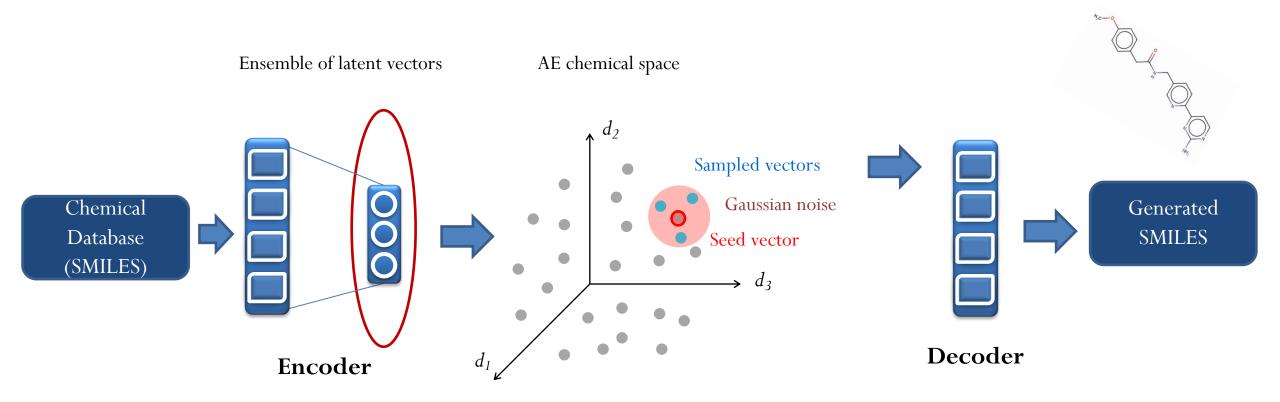


Latent Vector Reversibility is a Regional Property!



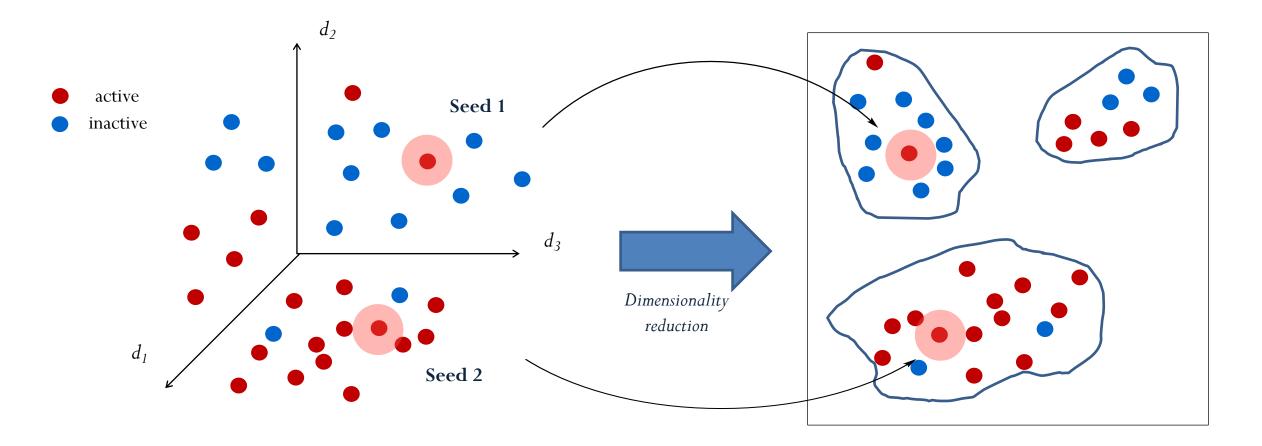
74

AutoEncoder: sampling using a seed vector

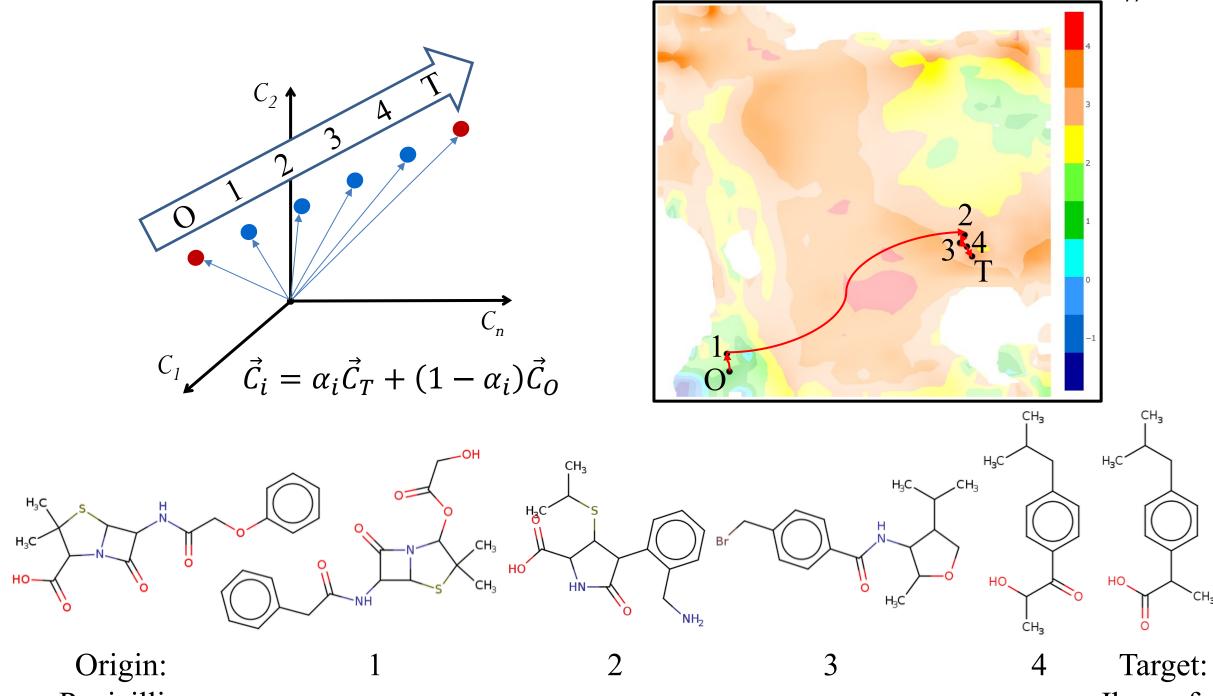


Goal: to identify a seed vector from which valid structures possessing a given activity can be generated

AutoEncoder chemical space: choice of a seed vector



Sampling from the **Seed 2** (belonging to a cluster of actives) has more chance to generate active molecules than from the **Seed 1** (singleton)



77

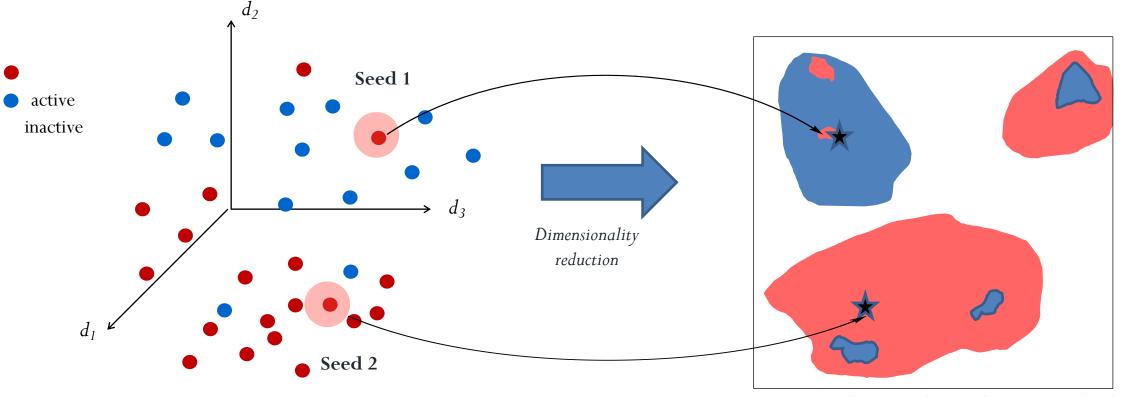
CH₃

0

`СН₃

0

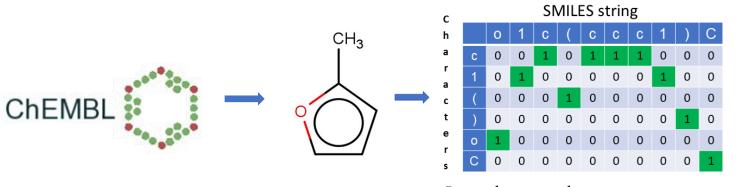
AutoEncoder chemical space analysis with GTM



Generative Topographic Map showing data (activity) distribution

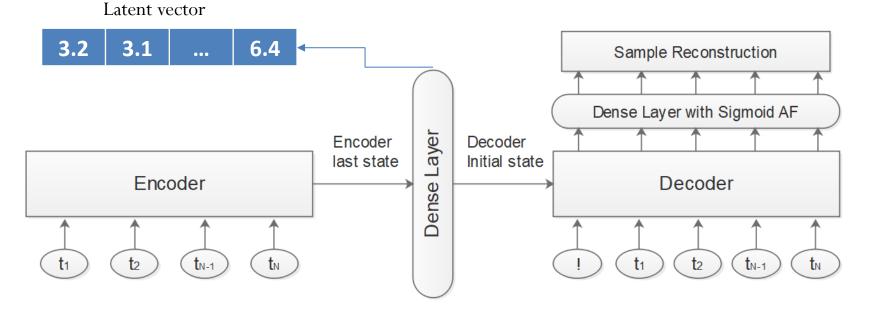
Generative Topographic Map (GTM) can be used for seed selection, chemical space exploration and activity prediction

AutoEncoder: Sequence-to-sequence Architecture

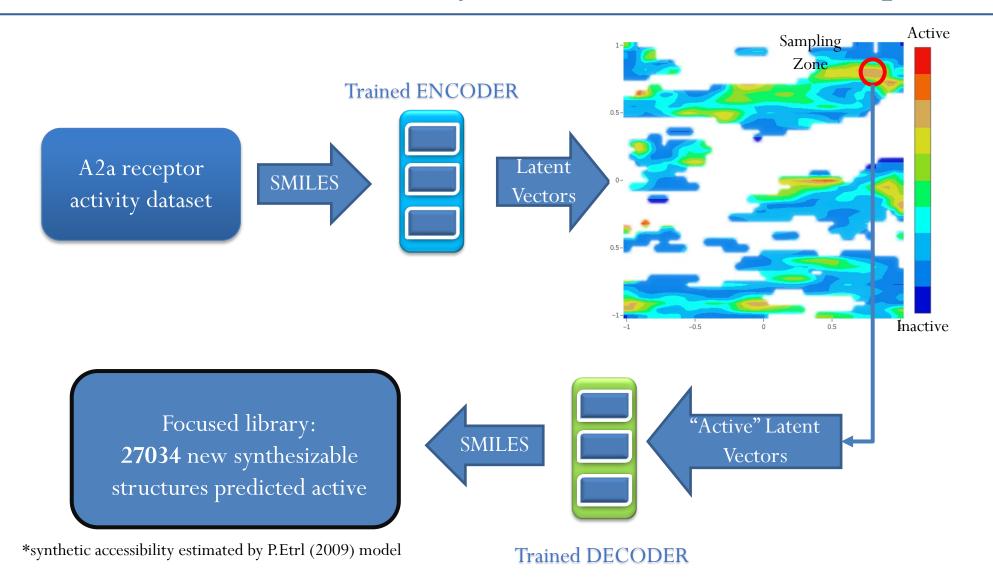


One – hot encoding

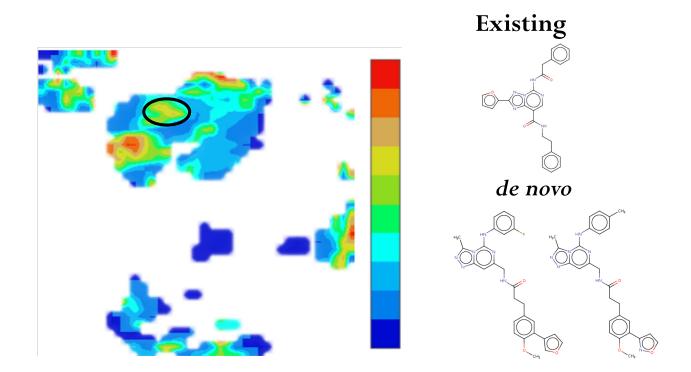
- Sequence-to-sequence autoencoder
- One-hot representation of SMILES
- Bidirectional Long Short-Term Memory (LSTM) encoder
- Unidirectional LSTM decoder
- Latent vector of 128 components



Generation of the focused library for Adenosine A2a receptor



Case study: Generation of inhibitors of A2a receptor

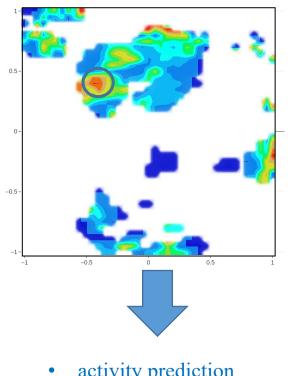


- Generated structures are enriched with new scaffolds
- According to docking experiments they are efficiently able to bind A2a

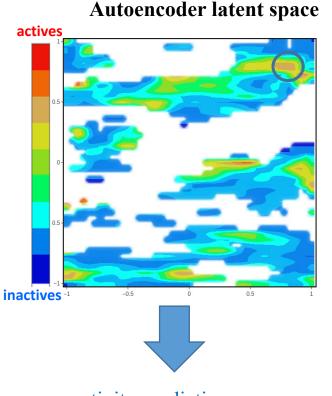
Soving the inverse-QSAR problem using a Conditional Variational Autoencoder

AutoEncoder vs Molecular descriptors space

ISIDA molecular descriptors space



- activity prediction
- no structure generation ٠

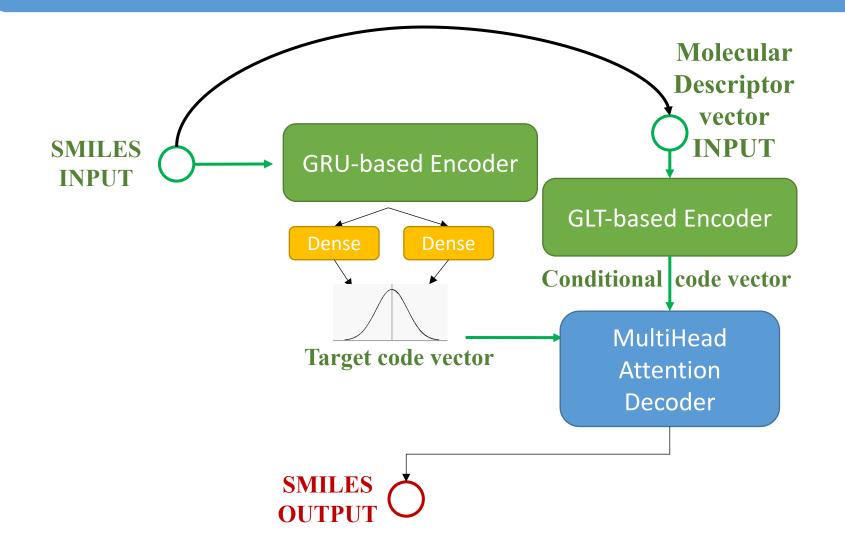


- activity prediction ٠
- generation of new structures

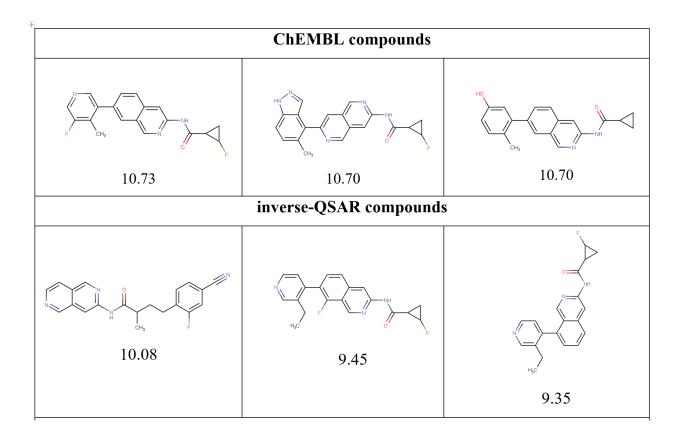
GTM Class landscapes for A2a-receptors binders (1303 actives and 3618 inactives)

Goal: development of deep-learning architecture able to generate structures with desired activities using any descriptor space (*inverse-QSAR problem*) 84

Attention-based Conditional Variational Autoencoder



Inverse-QSAR with ACoVAE



Structures and related pK_i values of the most potent *ABL Tyrosine kinase 1* ligands from ChEMBL and their counterparts generated with the ACoVAE tool

- ITN Marie-Curie BigChem
- ITN Marie Curie TubInTrain
- Institute of Organic Chemistry, Kiev, Ukraine
- Chumakov Center, Moscow, Russia

- Eli Lilly
- SANOFI
- Enamine
- eMolecules
- Novalix
- Janssen
 Pharmaceutical
- TOTAL
- SOLVAY

