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Chemography applications to drug design: 
from (ultra)large libraries analysis to de novo 

design of molecules and reactions



§  ~109 compounds  are physically available

§ < 1026 structures are stored in proprietary DBs

§ ~1033 drug-like molecules could be synthesized *

*  P. Polischuk, T. Madzidov , A. Varnek,  J. Comp. Aided Mol, Des. 2013, 27, p. 675-679

Chemography 
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Descriptor Value

D1 a1

D2 a2

…. …

Di ai

…. …

Molecular graph Descriptors Descriptor vector

……………………

> 5000 types of descriptors are used 

Encoding chemical structures by molecular descriptors
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Initial space
(N-dimensional )  

Latent space
 (2-dimensional)

Data visualization: dimensionality reduction problem
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Acetylcholinesterase dataset (DUD) : 100 actives and 100 inactives  

Multi-Dimensional
Scaling

Canonical Correlation Analysis Independent Component Analysis Exploratory Factor Analysis
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Laplacian Eigenmaps t-SNE Autoencoder dimensionality reduction
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Dimensionality reduction methods
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Data visualisation and analysis 

Virtual screening

Structure-Activity modeling

Library design

Library comparison

de novo design

Conformational space analysis

Drugs repurposing 

Ligand to Protein docking

Sequence space analysis

Generative Topographic Mapping : areas of application
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ISIDA 
Descriptor Space

Representative
frame set

21

Chemical 
library

Generative Topographic Mapping (GTM)
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1. Frame set selection
2. Molecules are represented in n-dimensional descriptor space



ISIDA 
Descriptor Space

Manifold 
training

Representative
Frame set

Trained 
manifold 

3 4

Chemical 
library

21

1. Frame set selection
2. Molecules are represented in n-dimensional descriptor space
3. A flexible 2D manifold is fitted to the data
4. Coordinates of the manifold are saved
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Generative Topographic Mapping (GTM)



Initial (descriptor) Space Latent space

Fuzzy nature of GTM
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• GTM generates a data “probability” distribution in both initial and latent data spaces.

• Initial space : ensemble of Gaussian functions situated in the nodes of a grid superposed with the manifold

• Latent space: fuzzy projection on the nodes of flattened grid

0,0 0,003,,, ,,,0,00,00010,005 0,006 0,008 0,006

Molecule → Responsibility (node residence « time ») vector of dimension Nnodes



Trained manifold 
New data

Density landscape

• display the compounds distribution in the chemical space
• spotting the regions that are under or overpopulated

Density landscapes
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Library → Cumulated Responsibility vector



0     10K     20K    30K     40K    50K

Lead-Like ZINC-In-Stock
(3.2M cmpds)

Y. Zabolotna, A. Lin, D. Horvath, G. Marcou, D. M. Volochnyuk, and A. Varnek, JCIM 2021 61 (1), 179-188

Every populated zone can be associated with some “chemotype”.

Chemical analysis with density maps
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Class landscape

Inactive                          Active 200    300    400    500    600

Property (activity) landscape

Colored according to the resident 
class ratio weighted by responsibility

Colored according to the weighted average
of selected activity (property) 

Density landscape

Colored according to the cumulated
responsibilities in each node
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molecular 
weight

GTM Landscapes



14

GTM Nodes act as Knowledge Repositories…

“My pIC50=7.8”

Increment “node pIC50” by Rn×7.8

• Low-density nodes are not trustworthy!

• Mixed nodes (harboring residents with widely diverging properties) are not trustworthy!

… and, after all “training” compounds 
contributed their increments, 
normalize node values by the total 
cumulated responsibility in there!

𝑃 ! =
∑"𝑃"𝑅!(𝑚)
∑"𝑅!(𝑚)

𝑃#$%& 𝑚′ =
∑! 𝑃 !𝑅!(𝑚′)
∑!𝑅!(𝑚′)

=)
!

𝑃 !𝑅!(𝑚′)for prediction, copy from node back to molecule:

May want to 

weigh by node 

trustworthiness!
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Class landscape

Predicts activity value 

Activity landscape

Predicts category 
“active” or “inactive”

new compound

Projection

GTM Landscapes as predictive models
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x Projections to empty zones are 
out of the model AD

H. A. Gaspar et al Mol. Informatics, 2015, 34 (6-7), 348-356



CHEMICAL DATABASE Descriptors1 -> GTM1

Act1

Act2

Act3

Activity 
profile

Each GTMi predicts only one activity (Acti)

Descriptors2 -> GTM2

Descriptors3 -> GTM3

GTM-based pharmacological profiling: single-task mode 
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CHEMICAL DATABASE

“Universal” GTM 
Act1

Act2

Act3

Activity 
profile

Universal GTM able to predict simultaneously several  Acti

Descriptor1 ->

GTM-based pharmacological profiling: multi-task mode 
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Serine/threonine-protein 
kinase AKT

Adenosine A2a receptor

MAP kinase p38 alpha Vascular endothelial growth 
factor receptor 2

Cyclin-dependent kinase 2

Phosphodiesterase 5A

Active

Inactive

• Defines a frame of biological relevant chemical space  (ChEMBL database) 
• Based on ISIDA descriptors tuned with respect to the modelled activities
• Predicts of > 700 biological activities

Density  landscape of the ChEMBL 
database (1.7  M cmds) 

Casciuc et al. J. Chem. Inf. Model., 2019, 59(1), 564-572 

« Universal » map
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A map of a chemical space is expected: 

• to accommodate the variety of known chemotypes;

• to distinguish between different activity classes;

• to separate actives and inactives within a given activity class

•  to be neighborhood behaviour (NB) compliant, e.g., molecules 

grouped together are expected to display similar activities 

« Universal » map of Chemical Space
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97%
Probability to be active   

42 %

One descriptor space may not be sufficient to correctly separate actives/inactives for all targets

Adenosine A2a receptor

Active

Inactive

MAP kinase p38 alpha

Experiment:   Active

Predictions:    Active

Experiment:   Active

Predictions:    Inactive

One single descriptors space may not be sufficient !
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New 
molecule

7 Universal maps Individual 
predictions 

Active

Active

Active

Inactive

Out of AD

Active

Active

Consensus 
prediction 

Chemical multiverse: ensemble of several optimal descriptor spaces 

Active

GTM class landscapes for Adenosine A2a receptor

22Casciuc et al. J. Chem. Inf. Model., 2019, 59(1), 564-572 



•  Virtual screening

• Analysis of large chemical collections

• Drug resistance analysis 

• AI-driven design of new molecules and reactions

GTM: applications

23
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CHEMICAL DATABASE
GTM activity or class landscape

Hits

Universal maps: application to virtual screening



Constrained Screening: Zones of Interest
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Probability to be 
active is > 50 %

Zones satisfying the 
query

Gaspar HA et al. (2015) J Chem Inf Model 55:84–94.

User’s query

CHEMBL279 activity

CHEMBL279 isVascular endothelial 
growth factor receptor 2.
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LogS is -2.0 ÷ 0.0

Number of H-bond 
donors is 2 ÷ 4

Complex Query

AND

AND

Zones of Interest

Constrained Screening



27

Zones of 
Interest

All queries are satisfied

Undesirable area

2/3 queries are satisfied

1/3 queries are satisfied

Query Landscape

Constrained Screening

PhD thesis of Arkadii Lin, UniStra, 2017



• SARS-COV Relevant Antiviral Space covers alpha (269 molecules) and beta (1308) genus of CoVs

D. Horvath et al. Molecular Informatics, 2020, 39(12), 2000080

beta

alpha

• The data for SARS-COV2 was not available at the very beginning of the COVID19 pandemic.

SARS and MERS

Discovery of new SARS-Cov2 agents 
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D. Horvath et al. Molecular Informatics, 2020, 39(12), 2000080

574 hits

>1.3 billion cmpds

Docking to  SARS-CoV-2 Mpro

10 hits

experiment

Confirmed Mpro inhibitors

M.Yu. Zakharova et al Frontiers in Pharmacology, 2021, 12, 773198

Discovery of new SARS-CoV-2 Mpro inhibitors Space
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Case studies:

• ChEMBL / ZINC  ( 1B structures) 
• Proprietary collection reshaping
• Selection of optimal DELs

Comparative analysis of (ultra)large chemical libraries

30



Commercially
available

chemotypes

Biologically
relevant 

chemotypes

>1.3 billion cmpds >1.8 M cmpds

Commercial vs Biologically relevant data
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Chemotypes missing in the 
commercial chemical space 

Biologically biased commercial 
libraries enhancement

Chemotypes never been 
biologically tested

Enhancement of 
screening  libraries

Commercial vs Biologically relevant data
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GTM manifold

ChEMBL-
specific zone

ZINC-specific
zone

Low resolution of the map doesn’t allow to identify the library-specific zones

#compounds  3 614 394  

Subset of Fragment-like cmpds

GTM class landscape for library comparison 
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« Global » GTM manifold in low resolution map
doesn’t separate the classes



New higher resolution maps better separate the library members

Hierarchical GTM (Zooming) 
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Level1 Level2Universal map

Zone 1
Zone 2

Zone 3

Zone 4

Maximum Common Substructures (MCS)

82 246#compounds  3 614 394  4 230

Yu. Zabolotna et al., « Searching for hidden treasures », J. Chem. Inf. Model. 2021, 61, 1, 179–188

Hierarchical GTM navigation of the chemical space
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>20 K chemotypes missing from 
the commercial chemical space 

Biorelevance-biased commercial 
library enhencement

> 100K chemotypes 
never been biologically tested

Enhancement of 
screening  libraries

Commercial vs Biologically relevant data
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Chemical Library Enrichment

37

2.2 M cmps 8.3 M cmps

BI intended to diversify its library by purchasing 

compounds from the Aldrich-Market Select (AMS) Database

Goal: selection of the AMS compounds with 

new scaffolds/substructures

PhD project of Arkadii Lin



1.5K compounds

Zoom 2

25K compounds

Zoom 1

Boehringer

Sigma-Aldrich
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10M compounds

New substructure from Sigma-Aldrich

O
N

O
O N

O N

O

ON

MCS extraction from the 
zones populated by AMS 

Chemical Library Enrichment
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Compounds potentially active 
against, at least, one out of 749 
ChEMBL targets were selected

10M compounds

45.5K substructures 401K compounds

≈ 1.2K structures

Rule of 5

GTM activity 
landscapes

PAINS

A. Lin et al. J Comput Aided Mol Des (2019), 33(3), 331-343 

Boehringer

Sigma-Aldrich

Chemical Library Enrichment



DNA tag 2

DNA tag 1

Building block 2

Building block 1

DNA-Encoded Library

DNA-Encoded Library: combinatorial collection of small molecules covalently attached to the short DNA tag

Halford, B. How DNA-encoded libraries are revolutionizing drug discovery. Chem. Eng. News. 2017, 95, 28.

Generation and analysis of general-purpose DELs 
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Screening libraries DNA-encoded libraries

Parallel screening in separate "wells"

Individual compounds may be cherry-
picked

Simultaneous screening in a single tube

DEL challenge 

Entire library as an object must be considered
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Selection of an “optimal” DEL

. . .

Thousands of DELs containing billions of 
molecules

Commercially available BBs

How to select an “optimal” DEL for a given task (e.g., primary screening) ? 

42

3 138 BBs 275 BBs 97 BBs 84M compounds 



79.000 Building blocks from 
eMolecules 2500 comparative landscapes 

DELi/ChEMBL

Selection of DEL the best covering a reference library (ChEMBL) chemical space 

2500 DELs designed (size: 1M-1B)
2.5B compounds generated
(1M compounds per DEL)

DELi / ChEMBL  coverage score  
calculation for each map

Selection of highly scoring DELs

43

eDesigner tool



Class landscape

Inactive                          Active 200    300    400    500    600

Property (activity) landscapeDensity landscape

44

molecular 
weight

Encoding a library by a vector using GTM landscapes



Class landscape

Inactive                          Active 200    300    400    500    600

Property (activity) landscapeDensity landscape

Cumulated ResponsibilityVector (CRV)

45

molecular 
weight

Encoding a library by a vector using GTM landscapes

Class Modulated ResponsibilityVector (cCRV) Property Modulated ResponsibilityVector (pCRV)



1. Responsibility Patterns (RP), e.g. GTM “address labels” 

obtained from a discretized, coarse responsibility vector

𝑹=(12:0.003 36:0.51 37:0.48 77:0.007) → RP=/36:5/37:5/

2. Cumulated Responsibility vectors

3. Property-modulated vectors 

4. Library (class)-modulated vectors

Library encoding

GTM-based metrics of chemical libraries similarity

Metric

Pairwise Lib1/Lib2:
• Tanimoto coefficient (Vect1/ Vect2)

𝑅𝑃𝑐𝑜𝑣 𝐿𝑖𝑏1, 𝐿𝑖𝑏2 =
𝑁!"##"$ 𝑅𝑃% ∩ 𝑅𝑃&

𝑁'"'() 𝑅𝑃%

Ensemble of libraries:
• meta-GTM built on {Vecti}

Coverage of Lib1 by Lib2
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Irrespective of the metric, common density (overlap) is a key factor defining inter-library similarity  

ChEMBL28 / DEL similarity
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DELs with the highest similarity to ChEMBL 

48

Aldehyde reductive amination 

Aldehyde reductive amination 

Aldehyde reductive amination 

Aldehyde reductive amination 

Ulman-type N-aryl coupling

Ulman-type N-aryl coupling

Migita thioether synthesis 

Migita thioether synthesis 

Carboxylic acid/amine condensation 

Carboxylic acid/amine condensation 

Aldehyde reductive amination 

Guanidinilation

Only robust 
coupling reactions 
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Aminothiazole synthesis

Larock Indole synthesis

Aldehyde reductive amination 

Imidazole synthesis

Larock Indole synthesis

Guanidinilation

Triazole synthesis

Oxadiazole synthesis

Triazole synthesis

Oxadiazole synthesis

Migita thioether synthesis 

Larock Indole synthesis

Coupling 
reactions 

Heterocyclization 
reactions

DELs with the lowest similarity to ChEMBL 



79.000 Building blocks from 
eMolecules 2500 comparative landscapes 

DELi/ChEMBL

Selection of DEL the best covering a reference library (ChEMBL) chemical space 

2500 DELs designed (size: 1M-1B)
2.5B compounds generated
(1M compounds per DEL)

DELi / ChEMBL  coverage score  
calculation for each map

Selection of highly scored DELs

50

eDesigner tool



ChEMBLDEL

3 “platinum” DELs cover >80% of ChEMBL chemical space

Selected DELs vs  ChEMBL
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R. Pikalyova et al. Mol. Inf. 2022, 41, 2100289.



Initial library space
(N-dimensional )  

Meta-GTM

Meta-GTM: a compact visualization of library space 

52

• GTM encodes a chemical library as a vector of descriptors (cumulated responsibilities, property or class  
modulated responsibilities) calculated from related landscapes

• This vectors can be used to build a meta-GTM where each data point represents a library

H.A. Gaspar et al., J. Chem. Inf. Model., 2015, 55 (1), 84–94



Remaining DELs

100 DELs closest to 
ChEMBL

ChEMBL

Vectors calculated for DEL/ChEMBL class landscapes

…………

Vector 1

DEL1/ChEMBL

DEL3/

Vector 2

DEL2/

DEL2497

Meta-GTM

…………

DEL1108

DEL309

ChEMBLDEL

DEL845

Meta-GTM built on reference library-modulated descriptors 

Vector 3

Vector 2497

ChEMBL



Remaining DELs

100 DELs closest to ChEMBL

Vectors calculated for logP landscapes

…………

DEL1

DEL3

DEL2

DEL2497

Meta-GTM

…………

ChEMBL

DEL2568

DEL1443

01234567

DEL2970

Meta-GTM built on property-modulated descriptors 

ChEMBL

logP

Vector 1

Vector 2

Vector 3

Vector 2497



MolWeight Remaining DELs

100 DELs closest to ChEMBL

logP

H-acceptors H-donors QED

ChEMBL

Meta-GTM built on property-modulated descriptors 



Density landscape Projected molecules with logP=3.5-4.5
14K

12K

10K

8K

6K

4K

2K

0

0

10K

30K

20K

40K

0

20K

40K

60K

80K

100K

120K

140K

0

10

20

30

40

50

0

10

20

30

40

50

logP=3.5-4.5

0

10

20

30

40

50

<-1 -1 0 1 2 3 4 5 6 7 >7

ChEMBL

DEL1

DEL2

56

logP distribution 

Linear vs chemographic property distribution



Data 
visualization

Properties 
analysis

Activity 
analysis

QSAR/
QSPR

Structural 
analysis

Analogue 
search

Toxicity

tMAP
(TMAP)

ChemMaps
(PCA)

PUMA
(PCA)103

105

107

1010 InfiniSee
(Ftrees)

Chemical  space size

Big Data
compatible

Online tools for Big Data analysis



J. Chem. Inf. Mod.,  2022, 62, 4537–4548
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• polyvalent tool based on the GTM Universal Maps 
• accommodates > 1.5 billion compounds
•  assembles > 40.000 hierarchically related maps of different scale 

• Data visualization, search, subsets selection
• Automated extraction of Maximal Common Substructures
• Scaffold analysis
• Projection of new compounds
• Pharmacological profiling with respect to >700 biological targets

Main features

Main options

Yu. Zabolotna et al. J. Chem. Inf. Mod.,  2022, 62, 4537–4548

ChemSpace Atlas tool

59

• Screening Compounds
• Natural products and their analogues 

Libraries



De novo design of biological 
active molecules using Artificial 

Intelligence tools

71



Encoder Decoder

O=C(C)Oc1ccccc1C(=O)O O=C(C)Oc1ccccc1C(=O)O

Latent vector

Real numbersChemical 
structure

Chemical 
structure

Autoencoder performing SMILES reconstruction
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Atom ordering dependence is a problem!

73

 
A: c1cc(C(NC(C(OC)=O)CCSC)=O)c(-c2ccccc2)cc1NCc1cncn1Cc1ccc(C)cc1 
B: N(Cc1cncn1Cc1ccc(C)cc1)c1cc(-c2ccccc2)c(C(=O)NC(C(OC)=O)CCSC)cc1 
C: c1cc(C)ccc1Cn1cncc1CNc1ccc(C(=O)NC(CCSC)C(OC)=O)c(-c2ccccc2)c1 

 



Latent Vector Reversibility is a Regional Property!

74

%
 Valid SM
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Encoder

Ensemble of latent vectors

Chemical 
Database 
(SMILES)
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AE chemical space

d1

d2

d3

Gaussian noise

Sampled vectors

Decoder

Generated 
SMILESSeed vector 

Goal: to identify a seed vector from which valid structures 
possessing a given activity can be generated 

AutoEncoder: sampling using a seed vector
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active

d1

d2

d3

inactive
Seed 1 

Seed 2 

Sampling from the Seed 2 (belonging to a cluster of 
actives)  has more chance to generate active molecules 
than from the Seed 1 (singleton) 

Dimensionality 
reduction

AutoEncoder chemical space: choice of a seed vector
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C1

C2
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4
T

Cn

𝐶5 = 𝛼5𝐶6 + 1 − 𝛼5 𝐶7

Origin:                         1                            2                         3                        4         Target: 
Penicillin                                                                                                                   Ibuprofen
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active

d1

d2

d3

inactive

Seed 1 

Seed 2 

Generative Topographic Map showing data (activity) distribution

Dimensionality 
reduction

Generative Topographic Map (GTM) can be used for seed selection,
chemical space exploration and activity prediction

AutoEncoder chemical space analysis with GTM



• Sequence-to-sequence autoencoder
• One-hot representation of SMILES
• Bidirectional Long Short-Term Memory (LSTM) 

encoder
• Unidirectional LSTM decoder 
• Latent vector of 128 components

One – hot encoding

3.2 3.1 … 6.4

Latent vector

AutoEncoder: Sequence-to-sequence Architecture
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A2a receptor 
activity dataset

SMILES

Trained ENCODER

Latent 
Vectors

Sampling 
Zone

Active

Inactive

“Active” Latent 
Vectors

Trained DECODER

SMILES
Focused library:

27034 new synthesizable 
structures predicted active 

*synthetic accessibility estimated by P.Etrl (2009) model

8119

Generation of the focused library for Adenosine A2a receptor



Existing

 

de novo 

•  Generated structures are enriched with new scaffolds
• According to docking experiments they are efficiently able to bind A2a

B. Sattarov et al. J. Chem. Inf. Model., 2019, 59(3), 1182-1196

Case study: Generation of inhibitors of A2a receptor

82



Soving the inverse-QSAR problem using a 
Conditional Variational Autoencoder



AutoEncoder vs Molecular descriptors space 

84

Autoencoder latent spaceISIDA molecular  descriptors space

GTM Class landscapes for A2a-receptors 
binders (1303 actives and 3618 inactives)

• activity prediction
• generation of new structures

Goal: development of deep-learning architecture able to generate structures with desired activities using any 
descriptor space (inverse-QSAR problem) 

actives

inactives

• activity prediction
• no structure generation
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GRU-based EncoderSMILES      
INPUT

Dense Dense

Molecular
Descriptor

vector
INPUT

MultiHead
Attention 
Decoder

SMILES 
OUTPUT

Attention-based Conditional Variational Autoencoder

GLT-based Encoder

Conditional code vector

Target code vector
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Inverse-QSAR with ACoVAE

Structures and related pKi values of the most potent ABL Tyrosine kinase 1 ligands from 
ChEMBL and their counterparts generated with the ACoVAE tool



• ITN Marie-Curie BigChem
• ITN Marie Curie TubInTrain
• Institute of Organic Chemistry, Kiev, Ukraine
• Chumakov Center, Moscow, Russia

• Eli Lilly 
• SANOFI
• Enamine
• eMolecules
• Novalix
• Janssen 

Pharmaceutical
• TOTAL
• SOLVAY

Collaboration
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