

In Silico Drug Design

Dragos Horvath

Laboratoire d'InfoChimie, UMR 7177

CNRS – Université de Strasbourg

67000 Strasbourg, France

dhorvath@unistra.fr

1. « Ceci n'est pas une molécule »

 Algorithms relating this to observable Properties

Computer Management of Chemical Structures

Models... for Human or Artificial Intelligence

- At various levels of possible molecular representations:
 - 2D: based on information available in the molecular graph: "paper chemistry" (*Human*) vs. "Chemoinformatics" (*Machine*)
 - 3D: considering molecular geometry: "Stereochemistry" (*Human*) vs. "Conformational sampling" (*Machine*)
 - Quantum Chemical (presenter's IQ insufficient for this topic)
- Learning from various experimental data sources:
 - Ligand-based: From examples of known ligands/inhibitors –
 no knowledge of the target structure: "Structure-Activity
 Relationships SAR" (Human) "Quantitative SAR" (Machine)
 - **Structure-based**: From **target structures**, hypothesize how the ligand would bind the active site: "Pharmacophore Match, Docking" (*Machine*).

Molecular Descriptors or Fingerprints

- Need to represent a structure by a **characteristic** bunch (vector) of numbers (descriptors).
 - Example: (Molecular Mass, Number of N Atoms, Total Charge, Number of Aromatic Rings, Radius of Gyration)
- Should include **property-relevant** aspects:
 - the "nature" of atoms, including information on their neighbor-hood-induced properties, and their relative arrangement.
 - Number of N Atoms ⇔ (Primary Amino Groups, Secondary Amino Groups, ..., ..., Amide, ..., Pyridine N, ...)
 - ... unless being a **H** bond acceptor is the key (O or N alike)!
 - Arrangement in space (3D, conformation-dependent distances in Å) or in the molecular graph (2D, topological distance = separating bond count)

Example 1: ISIDA Sequence Counts

Advertising: Position of Molecular Descriptor Designer. *Humans need not apply!*

- An AutoEncoder/Decoder is a Deep Neural Network producing an efficient dense representation of the input, by performing specific compression of learned data.
- The states of Bottleneck Neurons fully characterize the object!
- It's *reversible*: provide *any* vector $(x_1, x_2, ..., x_n)$ and the Decoder will return a chemical structure associated to those coordinates...

Training of the Autoencoder

The trained autoencoder model is generalized (it did *not* learn by heart)

Molecular Morphing: walking across chemical space!

Penicillin V **Ibuprofen** H₃C CH₃ H₃C NH₂

H₃C

2. Computer-Aided Ligand-Based Design: the « Medicinal Chemistry » of Ligand Fingerprints

≪ Similar molecules have similar properties » →
 ≪ Molecules with similar fingerprints have similar properties »

« Structure-Property Relationships » →
« Fingerprint-Property Relationships » (or Quantitative Structure-Property Relationships, QSPR)

2.1 Molecular Similarity in Chemoinformatics

_D2_lead.FBP _D2_active.FBP _D2_inact.FBP

The Similarity Principle – Neighborhood Behavior

Similarity-Based Virtual Screening...

Strenght & Limitations of Similarity-based VS

- (+) Only need ONE active ligand to seek for more like it...
- (+) With appropriate descriptors, calculated similarity may be complementary to the scaffold-based similarity perceived by medicinal chemists
 - → « Scaffold Hopping »: bypassing synthetic bottlenecks and/or pharmacokinetic property problems, patent space evasion, *etc*.

(--) Within the reference ligand, « all groups are equal, but some are more equal than others » when it comes to controlling activity... so what if we mismatch the latter??

2.2: So, we need to LEARN the features that really matter – building QSPRs

A QSPR model expresses observed correlations between *certain* descriptors and activity

Model Fitting

$A = \sum \alpha_i D_i$	linear
$D_1 \longrightarrow A$ $D_2 \longrightarrow A$	neural net
$\begin{array}{c c} M\left(D_{1},D_{2},D_{3},\ldots,D_{n}\right) \\ \hline \textbf{oui} & D_{i} & \\ \hline (M \ active) & (M \ inactive) \\ \end{array}$	decision tree
	neighbor- hood model

Correlation is not Causality - an Obvious, but Inconvenient Truth...

■ SAR sets are always limited in diversity and therefore may (and always will) accommodate coincidental relationships between different features:

The Descriptor Codspirac Building chedelipiate Opiate Moltodel...

Official organ of the Society for Basic Irreproducible Research (155N 0022-2038)

Welcome to our 48th

Year of Publication

It's just property covariance – luckily, of the "useful" kind!

• The most "active" carbamates of the training set turned out to be contaminated with ‰ traces of decarboxylation product, featuring the opioid ligand specific tertiary amine and having nanomolar potencies…

• Our QSAR actually explained... the decarboxylation mechanism: p-OR or $-NR_2$ stabilizes the intermediate carbocation... thus rendering contamination possible

"Let s be a representative sample of the set S..."

- It takes a sample of $\sim 10^4$ individuals to extrapolate the voting intentions of a population of $\sim 10^7$. What's the representative subset size of 10^{25} drug-like compounds?
 - If we ever dared to publish QSARs trained on fewer compounds, shame on us!
- If given N=3 coordinate pairs (Y,X), not even Carl Friedrich Gauss could come up with a model more sophisticated than Y=aX²+bX+c
- May your model apply to one million and one molecules it may still fail for the one million and second!
 - One cannot <u>validate</u> QSAR but just <u>fail to invalidate</u> it!

The Applicability Domain – A Compromise...

- Restrict the applicability of a QSAR model to a well-defined subset of the chemical space the one populated by the training molecules.
 - Insufficient sampling of chemotypes outside this AD is then irrelevant.
 - How do we define this subset of chemical space to be as large as possible, while nevertheless densely enough populated by training molecules?

Drawing Confidence from Consensus infochim.u-strasbg.fr/webserv/VSEngine.html

We are Medicinal Chemists – tell us about Pharmacophore Models, forget QSAR!!

- Bad news: Pharmacophore models are just a peculiar type of 3D-QSAR:
 - use overlay models to "bind" descriptors to specific spots in space
 - Pharmacophore hot spots are defined by the consensual presence of groups of similar type, throughout the series of known actives
 - Descriptors are occupancy levels of these spots

Kama Sutra with Ligands: Match As Many Equivalent Pharmacophore Features You May!

Böhm, Klebe, Kubinyi, "Wirkstoffdesign" (1999)

Cox₂ Minimalistic Overlay-based Model..

... can't get much better than that!

- \sim 2200 Molecules (pIC₅₀)
- 6 variables (occupancy scores)
- Training RMS=0.71, R²=0.71
- Validation RMS=0.70, Q²=0.72

Furthermore, it supports Scaffolfd Hopping!

• it manages to explain the Cox_2 activities of the apparently unrelated nonspecific Cox_1/Cox_2 inhibitors:

• This is an ideal scenario — scaffold-independent model trained on thousands of compounds: so maybe the overlay models are mechanistically relevant!

... or maybe not!

3. Structure-Based Drug Design: Exploiting Knowledge of the Target Structure

Target-Derived Pharmacophore Models

Docking: Simulating the Behavior of the Putative Ligand in Presence of the Target

Docking: Conformational Sampling of a Ligand in presence of the target binding site

- place a ligand conformer at the some point of the site.
- rotate & translate ligand with respect to site, and...
- ...simultaneously turn rotatable bonds in the ligand (and protein side chains? backbone?)...
- ...in order to optimize the site-ligand interaction energy.
- repeat the optimization procedure from other starting points

The Energy Function: Molecular Mechanics, Force Fields and Newton's Comeback...

- Quantum chemical calculations are too time-consuming. Atoms are approximated as "classical" interacting spheres.
- Covalent bonds & Valence Angles are modeled as harmonic springs. The energy required to stretch or compress a bond by Δb with respect to its natural length b_0 is expressed as $K_b\Delta b^2$

Force Field: Molecular Energy is a (simple?) function of Geometry...

Where do all those parameters come from?

- Few are directly issued from experimental observations
 - bond & angle deformation constants relate to IR vibration frequencies
 - van der Waals parameters can be measured... for ideal gas atoms.
- Atomic partial charges from electronegativity equilibration, molecular orbital "collapsing".
- Most are *fitted* (did you miss QSPR?), making sure that force field simulations reproduce:
 - experimentally determined geometries & interconformational barriers
 - Quantum-chemically determined potential energy landscape.

Docking-driven Virtual Screening...

¡Viva la Energia Libre, camaradas!

$$F_{dock} = -k_B T \ln \sum_{docked} exp\left(-\frac{E_i}{k_B T}\right)$$

$$F_{unbound} = -k_B T \ln \sum_{unbound} exp\left(-\frac{E_i}{k_B T}\right)$$

$$\Delta F = F_{docked} - F_{unbound}$$

Scoring Functions: The Revenge of QSPR over Boltzmann's Ensemble Physics

- We can **not** apply rigorous statistical physics:
 - We cannot at least not without using large-scale computing facilities – enumerate all the relevant states of the Ensemble.
 - The inaccuracy of force field energies goes way beyond $k_BT\approx0.6$ kcal/mol so much for $exp(-E/k_BT)$
- We may try to *fit* a QSPR equation, aiming to predict the binding ΔF from contacts seen in the most stable pose returned by docking, or in crystal structures...
 - Such a construct is called a *scoring function*.

```
\begin{split} & \Delta \pmb{F} \\ &= \alpha \times ContactCount_{HBond}^{site-lig} + \beta \times ContactCount_{Hphobic}^{site-lig} \\ &+ \gamma \times E_{vdW}^{site-lig} + \delta \times BlockedTorsionCount + \dots \end{split}
```

Yet, Docking is not the only way to account for the target structure: ProteoChemometrics...

• Since Docking is a sophisticated QSAR, with descriptors based on predicted site-ligand interactions, can't we do this *without* predicting these interactions?

Conclusions...

- Molecular modeling is far from first-principle science: its key element is empirical learning (QSPR).
 - ... but then, so is (medicinal) chemistry altogether.
- Correlation is not causality... it's *correlation!*
 - So, if correlations observed within the training set do apply to other molecules, forget metaphysical afterthoughts and exploit them, in successful virtual screening
 - However, an in-depth analysis of the model if feasible may reveal intrinsic limitations and pitfalls, and help to better delimit the AD.
- Training set information-richness & diversity is the key!
 - what hasn't been taught cannot be known! Do not blame the machine...(unless it's Windows-based)

More Conclusions...

- If a big pharma manager asks you "So, is QSAR useful?", please reply "Compared to what?"
- A wrong QSAR model may nevertheless ring a bell in a medicinal chemist's brain, and help to make right decisions
- Rely on the accumulated knowledge, and use QSAR to discover new combinations of known features & succeed in scaffold hopping
- There are moments when one should put known things aside, and venture out for random search of new paradigmbreaking ligands *new scaffold, new binding mode, new action mechanism*.