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Protein Binding Pocket 
Prediction
Using Equivariant Graph Neural Networks with Virtual Nodes
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• … are regions on a protein to which a ligand (e.g. small drug molecule) can bind.

• … usually lie in cavities on the protein surface.

• … often build active sites, i.e. binding triggers chemical modifications or conformational change.

→ Biological functions of proteins can be modulated by ligands (drugs) binding to them.

Protein Binding Pockets …
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Binding Pocket Prediction vs. Docking

Binding Pocket Prediction:

Where are regions on the protein to which a 

potential (unknown) ligand can bind?

Docking:

Where does a given ligand fit on a protein?
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only protein given, no ligand information protein and ligand given as input



Why Binding Pocket Prediction?

• provides valuable information for understanding protein function

• to identify a protein as a potential drug target

• to identify allosteric binding sites

• to gain information about potential drug ligands, 

guiding rational drug design 

• as a prerequisite for many docking or generative 

models
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Data for Pocket Prediction

• experimentally measured (X-ray crystallography, NMR) 3D structures of protein-ligand 

complexes

• atom coordinates saved in PDB files
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The Worldwide Protein Data Bank (wwPDB) 

• international collaboration between PDB in Europe, USA, Japan and UK

• data curated by one member → synchronized with all

• publicly available archive of macro-molecular structures solved by X-ray crystallography or 

NMR spectroscopy

• 210,836 structures in total

[1] Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980 (2003).
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Definition of a Binding Pocket

• Residue-centric definition: 

◦ segmentation of protein surface residues or atoms as binding or non-binding

◦ typically protein atoms within 4Å of any ligand atom belong to binding pocket

• Pocket-centric definition:

◦ defined by pocket center and/or as a set of points around the protein surface that characterize 

the shape of the pocket

◦ e.g. spaced grid points (CNN-based methods), points on a solvent accessible surface 

(P2Rank) or virtual node position (VN-EGNN)
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Types of Pocket Prediction Methods
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Geometry- and Energy-Based Methods Random Forest Classification of Protein Surface

Graph Neural NetworksConvolutional Neural Networks



Early Binding Site Detection Approaches

• Geometry-based approaches: analyze the shape 

of a molecular surface 

• Energy-based approaches: interactions of probes 

or molecular fragments with the protein

Both strategies can be performed on a Cartesian 

grid-based representation of the protein or grid-free.

[2] Volkamer, A. & Rarey, M. Exploiting structural information for drug-target assessment. Future Med. Chem. 6, 319–331 (2014).
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• Step 1: generate set of regularly spaced points on solvent 

accessible surface (SAS)

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminformatics 10, 39 (2018).

10

P2Rank [3] – a Random Forest Based Approach 



• Step 1: generate set of regularly spaced points on solvent 

accessible surface (SAS)

• Step 2: define feature vectors of SAS points based on 

distance-weighed atomic features of closest atoms 

• Step 3: random forest classifier for “ligandability”

• Step 4: clustering of ligandable SAS points 

• Step 5: ranking by cumulative ligandability score

• used as part of some docking methods (e.g. TankBind [4])

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminformatics 10, 39 (2018).

[4] Lu, W. et al. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction. http://biorxiv.org/lookup/doi/10.1101/2022.06.06.495043 (2022) doi:10.1101/2022.06.06.495043.
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P2Rank [3] – a Random Forest Based Approach 



DeepSurf [5] – a CNN-Based Approach

• Step 1: get SAS points

• Step 2: create local grid around normal vector for each 

point and assign physico-chemical features to voxels

• Step 3: apply 3D-CNN to grid → ligandability score

• Step 4: discard points with low score

• Step 5: cluster remaining points and assign to closest

atoms

• Step 6: rank according to average score

• other CNN-based methods: DeepSite, DeepPocket

[5] Mylonas, S. K., Axenopoulos, A. & Daras, P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinforma. Oxf. Engl. 37, 1681–1690 (2021).
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Proteins as Graphs

• Nodes: 

◦ (surface) atoms

◦ (surface) amino acid residues

• Node features:

◦ atomic features
▪ hand-crafted features (e.g. atom type, amino acid type, distance to surface)

▪ learned features (e.g. Evolutionary Scale Modeling (ESM) [9] embeddings)

◦ coordinates → geometric graphs

• Edges:

◦ chemical bonds

◦ spatial edges (distance less than a cut-off)

◦ nearest neighbours (fixed number)

[9] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 
2022.
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→ geometric graphs



Message Passing Neural Networks (MPNN)

[6] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message Passing for Quantum Chemistry. in Proceedings of the 34th International Conference on Machine Learning 1263–1272 (PMLR, 2017).
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E(n) – Equivariant Graph Neural Networks (EGNN)

• equivariant w.r.t. rotations and translations

[7] Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) Equivariant Graph Neural Networks. Preprint at http://arxiv.org/abs/2102.09844 (2022).
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EquiPocket – an EGNN-Based Approach

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction. Preprint at http://arxiv.org/abs/2302.12177 (2023).

16



EquiPocket – an EGNN-Based Approach

Objectives:

1. Segmentation:

◦ Prediction:

◦ Dice loss:

2. Relative direction of nearest ligand atom:

◦ Prediction:

◦ Direction loss:

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction. Preprint at http://arxiv.org/abs/2302.12177 (2023).
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ෞ𝑦𝑖 … prediction for node 𝑖 (in [0,1])

𝑦𝑖 … label for node 𝑖 (in {0,1})

ℎ𝑖out … output features of atom 𝑖
xi … initial position of atom 𝑖
xiout … output position of atom 𝑖

𝑑𝑖 … direction of nearest ligand atom



Florian Sestak, Lisa Schneckenreiter, Johannes Brandstetter, Sepp Hochreiter, Andreas Mayr, 

Günter Klambauer

VN-EGNN: E(3)-Equivariant Graph 
Neural Networks with Virtual 
Nodes Enhance Protein Binding 
Site Identification
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VN-EGNN Overview

• E(3)-equivariant graph neural network on protein residue graph

• additional virtual nodes (VN) connected to all physical nodes

• 3 message passing phases
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Protein Representation

• Protein residue graph

◦ Nodes = amino acid residues:

▪ coordinates: 𝐱𝑛 ∈ ℝ3

▪ ESM (Evolutionary Scale Modeling [9]) features: 𝒉𝑛 ∈ ℝ𝐷

◦ Edges:

▪ incoming from 10 nearest neighbors (if closer than 30Å) 

◦ Ground truth labels:

▪ binary classification (pocket residue or not): 𝑦𝑛 ∈ {0,1}

▪ binding site centers:  𝐲𝑚 ∈ ℝ3

[9] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 
2022.
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Virtual Nodes

• Coordinates:

◦ 𝐳𝑘 ∈ ℝ3

◦ evenly distributed on a sphere around the protein (Fibonacci grid)

• Feature vectors:

◦ 𝒗𝑘 ∈ ℝ𝐷

◦ initialized with a average feature vector of all residues

• Edges:

◦ Connected to all physical (residue) nodes

• Number:

◦ variable but 8 per default
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Message from residue 𝑖 to residue 𝑗:

Aggregation of messages:

Feature update:

Coordinate update:

Message Passing Phase I
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Message Passing Phase II
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Message from atom 𝑖 to virtual node 𝑗:

Aggregation of messages:

Feature update:

Coordinate update:



Message Passing Phase III

Message from virtual node 𝑖 to atom 𝑗:

Aggregation of messages:

Feature update:

Coordinate update:
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Initial Objective: Classification of Residues
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• Read-out function:

• Loss function (Dice loss):

ෞ𝑦𝑖 … prediction for node 𝑛 (in [0,1])

𝑦𝑖 … label for node 𝑛 (in {0,1})

ℎ𝑛… output features of atom 𝑛
𝑤 … classifier parameters

Virtual nodes move towards real binding site centers!



Final Objective
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Segmentation loss: 

Binding site center loss:

→ Combined loss function:

ෞ𝑦𝑖 … prediction for node 𝑛 (in [0,1])

𝑦𝑖 … label for node 𝑛 (in {0,1})

ෞ𝑦𝑘 … predicted binding site

center/output coordinates of VN 𝑘
𝑦𝑚 … true binding site center



Model Details

• 5 layers of VN-EGNN

• feature and message dimension: 100

• outputs: 

◦ segmentation of residues

◦ position of virtual nodes (= binding pocket center)

◦ binding pocket representations (output feature vectors of virtual nodes)
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Metrics

• DCC: minimal distance between ground-truth geometric binding site center and a virtual 

node/predicted binding site center

• DCA: minimal distance between a ligand atom in the binding pocket and a virtual 

node/predicted binding site center

• DCC/DCA success rate: proportion of pockets with DCC/DCA≤ 4Å

• Problem:

◦ The more virtual nodes the better this metric gets

→ clustering of closely located virtual nodes

→ ranking of virtual nodes and only evaluating top 𝑀 positions (𝑀 = number 

of pockets)
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• predicted confidence of position of VN 𝑘:                     for a MLP  

• confidence labels:                                                                      with and    

• confidence loss function: 

Self-Confidence Module

29



Visualizations
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yellow: initial VN positions

purple: final VN positions



Visualizations
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Results
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Ablation Studies
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Representations of Binding Pockets

• feature vectors of VNs represent binding pockets

• used for ranking predictions

• might be useful for down-stream tasks
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TSNE-embeddings of VN features colored by protein family



Increased Expressivity of VN-EGNN

To distinguish two 𝑛-chain graphs:

• need
𝑛

2
+ 1 layers of EGNN

• one layer of VN-EGNN is sufficient

35



Increased Expressivity – Empirical Results
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Experiments on 4-chain graphs:



Summary

• We propose VN-EGNN, an equivariant method for binding site identification.

• VN-EGNN uses virtual nodes to represent the binding pocket.

• Presumably, this is the first application of virtual nodes to geometric graph networks.

• VN-EGNN learns a feature representation of the binding pocket which can be beneficial for 

down-stream tasks.

• VN-EGNN has increased expressivity compared to traditional EGNNs.

37





References I

[1] Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol.

10, 980 (2003).

[2] Volkamer, A. & Rarey, M. Exploiting structural information for drug-target assessment. Future Med. 

Chem. 6, 319–331 (2014).

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand 

binding sites from protein structure. J. Cheminformatics 10, 39 (2018).

[4] Lu, W. et al. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure 

Prediction. http://biorxiv.org/lookup/doi/10.1101/2022.06.06.495043 (2022) doi:10.1101/2022.06.06.495043.

[5] Mylonas, S. K., Axenopoulos, A. & Daras, P. DeepSurf: a surface-based deep learning approach for the 

prediction of ligand binding sites on proteins. Bioinforma. Oxf. Engl. 37, 1681–1690 (2021).

39



References II

[6] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message Passing for 

Quantum Chemistry. in Proceedings of the 34th International Conference on Machine Learning 1263–1272 

(PMLR, 2017).

[7] Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) Equivariant Graph Neural Networks. Preprint at 

http://arxiv.org/abs/2102.09844 (2022).

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph 

Neural Network for Ligand Binding Site Prediction. Preprint at http://arxiv.org/abs/2302.12177 (2023).

[9] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., 

Candido, S., and Rives, A. Language models of protein sequences at the scale of evolution enable accurate 

structure prediction. bioRxiv, 2022.

40




