Protein Binding Pocket Prediction

Using Equivariant Graph Neural Networks with Virtual Nodes

Lisa Schneckenreiter, 14-03-2023

Protein Binding Pockets ...

- ... are regions on a protein to which a **ligand** (e.g. small drug molecule) can bind.
- ... usually lie in **cavities** on the protein **surface**.
- ... often build **active sites**, i.e. binding triggers chemical modifications or conformational change.
 - \rightarrow **Biological functions** of proteins can be modulated by ligands (drugs) binding to them.

Binding Pocket Prediction vs. Docking

Binding Pocket Prediction:

Where are regions on the protein to which a potential (unknown) ligand can bind?

only protein given, no ligand information

Docking:

Where does a given ligand fit on a protein?

protein and ligand given as input

Why Binding Pocket Prediction?

- provides valuable information for understanding protein function
- to identify a protein as a potential drug target
- to identify allosteric binding sites
- to gain information about potential drug ligands, guiding **rational drug design**
- as a prerequisite for many docking or generative models

Data for Pocket Prediction

- experimentally measured (X-ray crystallography, NMR) 3D structures of protein-ligand complexes
- atom coordinates saved in PDB files

	Chain name										
Amino Acid					/ Sequence Number						
			× 1			/ /					
Element \			1	1	Coordinates						
			<u>۱</u>	۱	1	1	X	Y	Z		
ATOM		1	N	ASP	L	1	4.060	7.307	5.186		
ATOM		2	CA	ASP	L	1	4.042	7.776	6.553		
ATOM		3	С	ASP	L	1	2.668	8.426	6.644		
ATOM		4	0	ASP	L	1	1.987	8.438	5.606		
ATOM		5	СВ	ASP	L	1	5.090	8.827	6.797		
ATOM		6	CG	ASP	L	1	6.338	8.761	5.929		
ATOM		7	OD1	ASP	L	1	6.576	9.758	5.241		
ATOM		8	0D2	ASP	L	1	7.065	7.759	5.948		
			- N	۱							

Element position within amino acid

The Worldwide Protein Data Bank (wwPDB)

- international collaboration between PDB in Europe, USA, Japan and UK
- data curated by one member \rightarrow synchronized with all
- publicly available archive of macro-molecular structures solved by X-ray crystallography or NMR spectroscopy
- 210,836 structures in total

[1] Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980 (2003).

Definition of a Binding Pocket

• Residue-centric definition:

° segmentation of protein surface residues or atoms as binding or non-binding

° typically protein atoms within 4Å of any ligand atom belong to binding pocket

Pocket-centric definition:

- defined by pocket center and/or as a set of points around the protein surface that characterize the shape of the pocket
- e.g. spaced grid points (CNN-based methods), points on a solvent accessible surface (P2Rank) or virtual node position (VN-EGNN)

Types of Pocket Prediction Methods

Geometry- and Energy-Based Methods

Convolutional Neural Networks

Random Forest Classification of Protein Surface

Graph Neural Networks

Early Binding Site Detection Approaches

- Geometry-based approaches: analyze the shape of a molecular surface
- Energy-based approaches: interactions of probes or molecular fragments with the protein

Both strategies can be performed on a Cartesian grid-based representation of the protein or grid-free.

[2] Volkamer, A. & Rarey, M. Exploiting structural information for drug-target assessment. Future Med. Chem. 6, 319–331 (2014).

P2Rank [3] – a Random Forest Based Approach

• Step 1: generate set of regularly spaced points on solvent accessible surface (SAS)

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminformatics 10, 39 (2018).

P2Rank [3] – a Random Forest Based Approach

- Step 1: generate set of regularly spaced points on solvent accessible surface (SAS)
- Step 2: define feature vectors of SAS points based on distance-weighed atomic features of closest atoms
- Step 3: random forest classifier for "ligandability"
- Step 4: clustering of ligandable SAS points
- Step 5: ranking by cumulative ligandability score

• used as part of some docking methods (e.g. TankBind [4])

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminformatics 10, 3, ...,...
[4] Lu, W. et al. TANKBind: Trigonometry-Aware Neural Networks for Drug-Protein Binding Structure Prediction. http://biorxiv.org/lookup/doi/10.1101/2022.06.06.495043 (2022) doi:10.1101/2022.06.06.495043.

JYU JOHANNES KEPLER UNIVERSITY LINZ

DeepSurf [5] – a CNN-Based Approach

- Step 1: get SAS points
- Step 2: create local grid around normal vector for each point and assign physico-chemical features to voxels
- Step 3: apply **3D-CNN** to grid \rightarrow ligandability score
- Step 4: discard points with low score
- Step 5: cluster remaining points and assign to closest atoms
- Step 6: rank according to average score
- other CNN-based methods: DeepSite, DeepPocket

[5] Mylonas, S. K., Axenopoulos, A. & Daras, P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinforma. Oxf. Engl. 37, 1681–1690 (2021).

Proteins as Graphs

• Nodes:

- ° (surface) atoms
- ° (surface) amino acid residues
- Node features:
 - ° atomic features
 - hand-crafted features (e.g. atom type, amino acid type, distance to surface)
 - learned features (e.g. Evolutionary Scale Modeling (ESM) [9] embeddings)
 - $^{\circ}$ coordinates \rightarrow geometric graphs
- Edges:
 - ° chemical bonds
 - spatial edges (distance less than a cut-off)
 - nearest neighbours (fixed number)

 \rightarrow geometric graphs

JYU JOHANNES KEPLER UNIVERSITY LINZ

13

Message Passing Neural Networks (MPNN)

• Message and Aggregate

$$\boldsymbol{m_{ij}}^{t+1} = M(\boldsymbol{h}_i^t, \boldsymbol{h}_j^t, \boldsymbol{e}_{i,j}; \boldsymbol{w})$$
$$\boldsymbol{m}_i^{t+1} = \sum_{j:a_{ij}=1} \boldsymbol{m}_{ij}$$

• Update

$$h_i^{t+1} = U(h_i^t, m_i^{t+1}; v)$$

[6] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message Passing for Quantum Chemistry. in Proceedings of the 34th International Conference on Machine Learning 1263–1272 (PMLR, 2017).

E(n) – Equivariant Graph Neural Networks (EGNN)

• equivariant w.r.t. rotations and translations

• Message and Aggregate

$$\boldsymbol{m}_{ij} = M\left(\boldsymbol{h}_{i}^{t}, \boldsymbol{h}_{j}^{t}, \left\|\boldsymbol{\mathbf{x}}_{i}^{l} - \boldsymbol{\mathbf{x}}_{j}^{l}\right\|^{2}, \boldsymbol{e}_{i,j}; \boldsymbol{w}\right)$$
$$\boldsymbol{m}_{i}^{t+1} = \sum_{j:a_{ij}=1} \boldsymbol{m}_{ij}$$

• Update (ϕ_x denotes a NN too)

$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + C \sum_{j:a_{ij}=1} (\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}) \phi_{x}(\boldsymbol{m}_{ij})$$
$$\boldsymbol{h}_{i}^{l+1} = U(\boldsymbol{h}_{i}^{l}, \boldsymbol{m}_{i}; \boldsymbol{v})$$

[7] Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) Equivariant Graph Neural Networks. Preprint at http://arxiv.org/abs/2102.09844 (2022).

EquiPocket – an EGNN-Based Approach

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction. Preprint at http://arxiv.org/abs/2302.12177 (2023).

EquiPocket – an EGNN-Based Approach

Objectives:

1. Segmentation:

- Prediction: $\hat{y}_i = \text{Sigmoid}(\text{MLP}(h_i^{\text{out}}))$.
- Dice loss: $\mathcal{L}_b = 1 \frac{2 \cdot \sum (\hat{y}_i \cdot y_i)}{\sum (\hat{y}_i) + \sum (y_i) + \epsilon}$,
- 2. Relative direction of nearest ligand atom:

• Prediction: $\hat{d}_i = \frac{x_i^{\text{out}} - x_i}{\|x_i^{\text{out}} - x_i\|_2}$.

• Direction loss: $\mathcal{L}_d = \sum (1 - \cos(\hat{d}_i, d_i)).$

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction. Preprint at http://arxiv.org/abs/2302.12177 (2023).

JYU JOHANNES KEPLER UNIVERSITY LINZ

$\widehat{y_i}$ prediction for node i (in [0,1]) y_i label for node i (in {0,1})
$h_i^{\text{out}} \dots$ output features of atom i $x_i \dots$ initial position of atom i $x_i^{\text{out}} \dots$ output position of atom i
d_i direction of nearest ligand atom

VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification

Florian Sestak, Lisa Schneckenreiter, Johannes Brandstetter, Sepp Hochreiter, Andreas Mayr, Günter Klambauer

VN-EGNN Overview

- E(3)-equivariant graph neural network on protein residue graph
- additional virtual nodes (VN) connected to all physical nodes
- 3 message passing phases

Protein Representation

- Protein residue graph
 - Nodes = amino acid residues:
 - coordinates: $\mathbf{x}_n \in \mathbb{R}^3$
 - ESM (Evolutionary Scale Modeling [9]) features: $\mathbf{h}_n \in \mathbb{R}^D$
 - Edges:
 - incoming from 10 nearest neighbors (if closer than 30Å)
 - Ground truth labels:
 - binary classification (pocket residue or not): $y_n \in \{0,1\}$
 - binding site centers: $\mathbf{y}_m \in \mathbb{R}^3$

[9] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. Language models of protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

Virtual Nodes

- Coordinates:
 - ° $\mathbf{z}_k \in \mathbb{R}^3$
 - ° evenly distributed on a sphere around the protein (Fibonacci grid)
- Feature vectors:
 - $\circ \boldsymbol{v}_k \in \mathbb{R}^D$
 - ° initialized with a average feature vector of all residues
- Edges:
 - ° Connected to all physical (residue) nodes
- Number:
 - ° variable but 8 per default

Message Passing Phase I

Message from residue *i* to residue *j*:

 $\boldsymbol{m}_{ij}^{(aa)} = \boldsymbol{\phi}_{e^{(aa)}}(\boldsymbol{h}_{i}^{l},\boldsymbol{h}_{j}^{l},\|\mathbf{x}_{i}^{l}-\mathbf{x}_{j}^{l}\|,a_{ij})$

Aggregation of messages:

$$m_j^{(aa)} = \frac{1}{|\mathcal{N}(j)|} \sum_{i \in \mathcal{N}(j)} m_{ij}^{(aa)}$$

Feature update:

$$h_j^{l+1/2} = \phi_{h^{(aa)}}\left(h_j^l, m_j^{(aa)}\right)$$

Coordinate update:

$$\mathbf{x}_{j}^{l+1/2} = \mathbf{x}_{j}^{l} + \frac{1}{|\mathcal{N}(j)|} \sum_{i \in \mathcal{N}(j)} \frac{\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}}{\|\mathbf{x}_{i}^{l} - \mathbf{x}_{j}^{l}\|} \phi_{x^{aa}}(m_{ij}^{(aa)})$$

Message Passing Phase II

Step 2

Message from atom *i* to virtual node *j*:

$$m_{ij}^{(av)} = \phi_{e^{(av)}}(h_i^{l+1/2}, v_j^l, \|\mathbf{x}_i^{l+1/2} - \mathbf{z}_j^l\|, d_{ij})$$

Aggregation of messages:

$$m_j^{(av)} = \frac{1}{N} \sum_{i=1}^N m_{ij}^{(av)}$$

Feature update:

$$v_j^{l+1} = \phi_{h^{(av)}}\left(v_j^l, m_j^{(av)}\right)$$

Coordinate update:

$$\mathbf{z}_{j}^{l+1} = \mathbf{z}_{j}^{l} + \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i}^{l+1/2} - \mathbf{z}_{j}^{l}}{\|\mathbf{x}_{i}^{l+1/2} - \mathbf{z}_{j}^{l}\|} \phi_{x^{av}}(m_{ij}^{(av)})$$

Message Passing Phase III

Message from virtual node *i* to atom *j*:

$$m_{ij}^{(va)} = \phi_{e^{(va)}}(v_i^{l+1}, h_j^{l+1/2}, \|\mathbf{z}_i^{l+1} - \mathbf{x}_j^{l+1/2}\|, d_{ij})$$

Aggregation of messages:

$$m_j^{(va)} = \frac{1}{K} \sum_{i=1}^K m_{ij}^{(va)}$$

Feature update:

$$h_{j}^{l+1} = \phi_{h^{(va)}} \left(h_{j}^{l+1/2}, m_{j}^{(va)} \right)$$

Coordinate update:

$$\mathbf{x}_{j}^{l+1} = \mathbf{x}_{j}^{l+1/2} + \frac{1}{K} \sum_{i=1}^{K} \frac{\mathbf{z}_{i}^{l+1} - \mathbf{x}_{j}^{l+1/2}}{\|\mathbf{z}_{i}^{l+1} - \mathbf{x}_{j}^{l+1/2}\|} \phi_{x^{va}}(m_{ij}^{(va)})$$

Initial Objective: Classification of Residues

- Read-out function: $\hat{y}_n = \sigma(w^\top h_n^L)$
- Loss function (Dice loss): $\mathcal{L}_{segm} = Dice((y_1, \dots, y_N), (\hat{y}_1, \dots, \hat{y}_N)) \coloneqq 1 \frac{2\sum_{n=1}^N y_n \, \hat{y}_n + \epsilon}{\sum_{n=1}^N y_n + \sum_{n=1}^N \hat{y}_n + \epsilon}$

Virtual nodes move towards real binding site centers!

Final Objective

Segmentation loss:

$$\mathcal{L}_{\text{segm}} = \text{Dice}\left((y_1, \dots, y_N), (\hat{y}_1, \dots, \hat{y}_N)\right) \coloneqq 1 - \frac{2\sum_{n=1}^N y_n \, \hat{y}_n + \epsilon}{\sum_{n=1}^N y_n + \sum_{n=1}^N \hat{y}_n + \epsilon}$$

Binding site center loss:

$$\mathcal{L}_{\text{bsc}} = \text{Dist}\left(\{\mathbf{y}_1, \dots, \mathbf{y}_M\}, \{\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_K\}\right) \coloneqq \frac{1}{M} \sum_{m=1}^M \min_{k \in 1, \dots, K} \|\mathbf{y}_m - \hat{\mathbf{y}}_k\|^2.$$

 \rightarrow Combined loss function:

 $\mathcal{L} = \text{Dist}\left(\{\mathbf{y}_1, \dots, \mathbf{y}_M\}, \{\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_K\}\right) + \alpha \text{Dice}\left((y_1, \dots, y_N), (\hat{y}_1, \dots, \hat{y}_N)\right)$

 $\hat{\mathbf{y}}_k$... predicted binding site center/output coordinates of VN k \mathbf{y}_m ... true binding site center

Model Details

- 5 layers of VN-EGNN
- feature and message dimension: 100
- outputs:
 - ° segmentation of residues
 - position of virtual nodes (= binding pocket center)
 - binding pocket representations (output feature vectors of virtual nodes)

Metrics

- **DCC:** minimal distance between ground-truth geometric binding site center and a virtual node/predicted binding site center
- **DCA:** minimal distance between a ligand atom in the binding pocket and a virtual node/predicted binding site center
- **DCC/DCA success rate:** proportion of pockets with DCC/DCA ≤ 4 Å

• Problem:

- ° The more virtual nodes the better this metric gets
 - \rightarrow clustering of closely located virtual nodes
 - \rightarrow ranking of virtual nodes and only evaluating top *M* positions (*M* = number of pockets)

Self-Confidence Module

• predicted confidence of position of VN k: $\hat{c}_k = \psi(v_k)$ for a MLP ψ

• confidence labels:
$$c_k = \begin{cases} 1 - \frac{1}{2\gamma} \cdot \|\mathbf{y}_k - \hat{\mathbf{y}}_k\| & \text{if } \|\mathbf{y}_k - \hat{\mathbf{y}}_k\| \le \gamma, \\ c_0 & \text{otherwise} \end{cases}$$
 with $c_0 = 0.001$ and $\gamma = 4$

• confidence loss function:
$$\mathcal{L}_{\text{confidence}} = \frac{1}{K} \sum_{k=1}^{K} (c_k - \hat{c}_k)^2$$

Visualizations

yellow: initial VN positions purple: final VN positions

Visualizations

Results

Methods	Param	coacH420		HOLO4K ^d		PDBbind2020	
	(M)	DCC↑	DCA↑	DCC↑	DCA↑	DCC↑	DCA↑
Fpocket (Le Guilloux et al., 2009) ^b P2Rank (Krivák & Hoksza, 2018) ^c		0.228 <i>0.464</i>	0.444 0.728	0.192 0.474	0.457 0.787	0.253 <i>0.653</i>	0.371 0.826
DeepSite (Jiménez et al., 2017) ^b Kalasanty (Stepniewska-Dziubinska et al., 2020) ^b DeepSurf (Mylonas et al., 2021) ^b	1.00 70.64 33.06	\ 0.335 0.386	0.564 0.636 0.658	\ 0.244 0.289	0.456 0.515 0.635	\ 0.416 0.510	\ 0.625 0.708
GAT (Veličković et al., 2018) ^b GCN (Kipf & Welling, 2017) ^b GAT + GCN ^b GCN2 (Chen et al., 2020) ^b	0.03 0.06 0.08 0.11	$\begin{array}{c} 0.039(0.005)\\ 0.049(0.001)\\ 0.036(0.009)\\ 0.042(0.098)\end{array}$	0.130(0.009) 0.139(0.010) 0.131(0.021) 0.131(0.017)	$\begin{array}{c} 0.036(0.003)\\ 0.044(0.003)\\ 0.042(0.003)\\ 0.051(0.004) \end{array}$	0.110(0.010) 0.174(0.003) 0.152(0.020) 0.163(0.008)	0.032(0.001) 0.018(0.001) 0.022(0.008) 0.023(0.007)	$\begin{array}{c} 0.088(0.011)\\ 0.070(0.002)\\ 0.074(0.007)\\ 0.089(0.013) \end{array}$
SchNet (Schütt et al., 2017) ^b EGNN (Satorras et al., 2021) ^b	0.49 0.41	0.168(0.019) 0.156(0.017) 0.423(0.014)	0.444(0.020) 0.361(0.020)	0.192(0.005) 0.127(0.005)	0.501(0.004) 0.406(0.004)	0.263(0.003) 0.143(0.007) 0.545(0.010)	0.457(0.004) 0.302(0.006) 0.721(0.004)
VN-EGNN (ours)	1.70	0.605(0.009)	0.750(0.008)	0.532(0.021)	0.659(0.026)	0.669(0.015)	0.820(0.010)

Ablation Studies

Methods	VN	heterog.	ESM	COACH420		HOLO4K		PDBbind2020	
		MP		DCC↑	DCA↑	DCC↑	DCA↑	DCC↑	DCA↑
EGNN (Satorras et al., 2021) ^b	×	×	×	0.156(0.017)	0.361(0.020)	0.127(0.005)	0.406(0.004)	0.143(0.007)	0.302(0.006)
VN-EGNN (residue emb.)	\checkmark	\checkmark	×	0.503(0.022)	0.684(0.016)	0.438(0.019)	0.605(0.013)	0.551(0.017)	0.751(0.009)
VN-EGNN (homog.)	\checkmark	×	\checkmark	0.575(0.008)	0.708(0.009)	0.479(0.012)	0.595(0.010)	0.649(0.010)	0.805(0.006)
VN-EGNN (full)	\checkmark	\checkmark	\checkmark	0.605(0.009)	0.750(0.008)	0.532(0.021)	0.659(0.026)	0.669(0.015)	0.820(0.010)

Representations of Binding Pockets

- feature vectors of VNs represent binding pockets
- used for ranking predictions
- might be useful for down-stream tasks

Protein Family

- Protease
- Kinase
- Lyase
- Transferase
- Hydrolase
- Reader
- Ligand-gated ion channel
- Nuclear receptor
- other

TSNE-embeddings of VN features colored by protein family

Increased Expressivity of VN-EGNN

To distinguish two *n*-chain graphs:

- need $\left\lfloor \frac{n}{2} \right\rfloor + 1$ layers of EGNN
- one layer of VN-EGNN is sufficient

Increased Expressivity – Empirical Results

Experiments on 4-chain graphs:

	Dim.	1 Layer	2 Layers	3 Layers	4 Layers	5 Layers	6 Layers	7 Layers	8 Layers
	8	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	98.0 ± 9.8	94.0 ± 16.2	93.0 ± 17.3	99.5 ± 5.0	99.5 ± 5.0
	16	50.0 ± 0.0	50.0 ± 0.0	86.0 ± 22.4	97.5 ± 10.9	99.5 ± 5.0	99.5 ± 5.0	99.5 ± 5.0	100.0 ± 0.0
EGNN	32	50.0 ± 0.0	50.0 ± 0.0	56.5 ± 16.8	50.0 ± 0.0	50.0 ± 0.0	96.5 ± 12.8	99.0 ± 7.0	93.5 ± 16.8
	64	50.0 ± 0.0	50.0 ± 0.0	100.0 ± 0.0	99.0 ± 7.0	100.0 ± 0.0	99.0 ± 7.0	100.0 ± 0.0	100.0 ± 0.0
	128	50.0 ± 0.0	50.0 ± 0.0	96.5 ± 12.8	98.5 ± 8.5	95.0 ± 15.0	99.5 ± 5.0	99.5 ± 5.0	99.5 ± 5.0
	8	65.5 ± 23.1	50.0 ± 0.0	84.5 ± 23.1	92.5 ± 17.9	64.0 ± 22.4	97.0 ± 11.9	86.5 ± 23.3	97.5 ± 10.9
VN-EGNN	16	86.0 ± 23.5	95.0 ± 15.0	98.5 ± 8.5	99.5 ± 5.0	99.5 ± 5.0	98.0 ± 9.8	99.5 ± 5.0	100.0 ± 0.0
	32	95.0 ± 15.0	100.0 ± 0.0	99.5 ± 5.0	99.5 ± 5.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
	64	97.5 ± 10.9	100.0 ± 0.0	99.5 ± 5.0	99.5 ± 5.0	99.0 ± 7.0	100.0 ± 0.0	100.0 ± 0.0	99.5 ± 5.0
	128	99.0 ± 7.0	99.5 ± 5.0	99.5 ± 5.0	99.0 ± 7.0	99.5 ± 5.0	99.5 ± 5.0	99.0 ± 7.0	99.0 ± 7.0

Summary

- We propose **VN-EGNN**, an equivariant method for binding site identification.
- VN-EGNN uses **virtual nodes** to represent the binding pocket.
- Presumably, this is the first application of virtual nodes to geometric graph networks.
- VN-EGNN learns a **feature representation** of the binding pocket which can be beneficial for down-stream tasks.
- VN-EGNN has increased expressivity compared to traditional EGNNs.

JOHANNES KEPLER UNIVERSITY LINZ

References I

[1] Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. *Nat. Struct. Biol.* **10**, 980 (2003).

[2] Volkamer, A. & Rarey, M. Exploiting structural information for drug-target assessment. *Future Med. Chem.* **6**, 319–331 (2014).

[3] Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. *J. Cheminformatics* **10**, 39 (2018).

[4] Lu, W. et al. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction. http://biorxiv.org/lookup/doi/10.1101/2022.06.06.495043 (2022) doi:10.1101/2022.06.06.495043.

[5] Mylonas, S. K., Axenopoulos, A. & Daras, P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. *Bioinforma. Oxf. Engl.* **37**, 1681–1690 (2021).

References II

[6] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message Passing for Quantum Chemistry. in *Proceedings of the 34th International Conference on Machine Learning* 1263–1272 (PMLR, 2017).

[7] Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) Equivariant Graph Neural Networks. *Preprint at http://arxiv.org/abs/2102.09844* (2022).

[8] Zhang, Y., Huang, W., Wei, Z., Yuan, Y. & Ding, Z. EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction. *Preprint at http://arxiv.org/abs/2302.12177* (2023).

[9] Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. Language models of protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

JOHANNES KEPLER UNIVERSITY LINZ