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Integrated Drug Discovery
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Integrated Drug Discovery France
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AI for Drug Discovery: the Gold Rush

Target ID

Retrosynthesis

Predictive
models Protein 

structure 
predictionMolecule generation
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Generate molecules with AI?

Generative 
model

Predictive 
models

Project data
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Generate molecules with AI?

Generative 
model

Predictive 
models

Lead Gen. Lead Opt.

Project data Less More

Predictive models performance Worse Better

Chemical space to explore Larger More focused

Synthesis likelihood Lower Higher

Integration in the legacy workflow More challenging Less challenging
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Topics of concern in small molecule GenAI for lead 
optimization

Over-
exploitation by 

generative 
models 

Inducing 
structural 
constraints 

Drug-likeness of 
generated 
compounds

Exploration-
exploitation 

tradeoff



Translation to practice
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Objectives: 

• Evaluate Med Chemists proposals

• Generate a last round of compounds

• Close to the pre-candidate (same scaffold, 2 diversification points)

• Optimized on 8 properties

• Synthetically readily accessible

Generative AI for protein kinase X: last effort

Scaffold*

*
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• Composite scoring function

• Biochemical, cell pIC50s, counter-targets, 

unbound fraction in Brain, solubility, logD

• Several models per readout if the models 

are correct

• AD for generation

• Score thresholds from the Med. Chemists’ 

propositions

Protein kinase X: reward function

Raw Score

Reward

1

0

Threshold
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Generation outcome

Human intelligence + ML score:
• 73 close analogs of known cpds

• 12 « flat cpds » selected 

=> 23 synthesized with stereo

AI design: 

• 857 cpds generated in-criteria

• 108 selected for Med Chemists

• 10 « flat » cpds selected for synthesis 

=> 17 synthesized with stereo.

• Non-trivial R-groups 

A shortlist of 5+3 cpds that fulfill the vast majority of 15 criteria
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Chemical space

Colored by 

molecule origin and fate
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Colored by 

Multi-parametric score
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• Timing

• The lead optimization GenAI window

• Enough data for good models

• Still useful to explore (vs exploit)

• "Data Science is teamwork"

• Even with chemical lead opt data

• Curate curate curate: Speed and quality

Using Chemical Language Models: 
Practical considerations on execution

Generative 
model

Predictive 
model

Project 
data
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• Define clear and shared objectives

• From screen to compound: 

• Quality & synthetisability

• Or BB availability?

• From screen to data: cycle time

• Acculturate on statistics

• Explicit, transparent, shared design choices

• Generative approaches as part of a strategy

• Explainable decision making

Using Chemical Language Models: 
Practical considerations on integration

0,85 = 0.33

5 binary models, 
success rate 0.8

pIC50 Caco2 logS FUM IEN

✓ ✓ ✓✓

✓ ✓ ✓

✓



✓ ✓✓ ✓





Thank you!
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