

sanofi

Practice of Generative AI in lead optimization

Marc Bianciotto

March 14th 2024 AiChemist Spring School - Berlin

Dr. Maximilien Levesque

(now Agemia)

Pr. Rodolphe Vuilleumier

And in Sanofi

CADD: B. Filoche, C. Terrier, C. Grebner, Y. Li, S. Guessreguen, H. Matter, S. Sauer Chemistry: S. Desprets and the medicinal chemists involved in the Molecular Turing Test

"Marc Bianciotto is a Sanofi employee and may hold shares and/or stock options in the company"

The history of Sanofi

Integrated Drug Discovery

Integrated Drug Discovery France

AI for Drug Discovery: the Gold Rush

Generate molecules with AI?

Generate molecules with AI?

	Lead Gen.	Lead Opt.) :
Project data	Less	More	4
Predictive models performance	Worse	Better	
Chemical space to explore	Larger	More focused	
Synthesis likelihood	Lower	Higher	
Integration in the legacy workflow	More challenging	Less challenging)

Topics of concern in small molecule GenAI for lead optimization

e_challenge_english Last Checkpoint: 10/17/2022 (unsaved changes)

sanofi

Translation to practice

Generative AI for protein kinase X: last effort

Objectives:

- Evaluate Med Chemists proposals
- Generate a last round of compounds
 - Close to the pre-candidate (same scaffold, 2 diversification points)
 - Optimized on 8 properties
 - Synthetically readily accessible

Protein kinase X: reward function

v root:

- ► GLOBAL:
- NNGP_APDP_regression-bioch_pIC50:
- NNGP_RDKit_regression-cell_pIC50:
- NNGP_RDKit_regression-FUM_Brain:
- NNGP_APDP_regression-CLint:
- NNGP_APDP_regression
- NNGP_RDKit_regression
- bioch-pIC50-1:
- b deepchem- cell-pIC50-1:
- > deepchem- FUM_Brain-percent-1:
- deepchem-logD74_all-logD-1std:
- deepchem-Solubility-uM_pH74-1std:
- has_not_substructure:

- Composite scoring function
 - Biochemical, cell pIC50s, counter-targets, unbound fraction in Brain, solubility, logD
 - Several models per readout if the models are correct
- AD for generation
- Score thresholds from the Med. Chemists' propositions
 Reward

Generation outcome

Human intelligence + ML score:

- 73 close analogs of known cpds
- 12 « flat cpds » selected
- => 23 synthesized with stereo

AI design:

- 857 cpds generated in-criteria
 - 108 selected for Med Chemists
- + 10 « flat » cpds selected for synthesis
- => 17 synthesized with stereo.
- Non-trivial R-groups

A shortlist of 5+3 cpds that fulfill the vast majority of 15 criteria

Chemical space

Colored by

molecule origin and fate

Legend Assay			
	MedChem, Synthesized		
	MedChem, Best		
	MedChem		
	Known		
	Generated, Synthesized		
	Generated, Selected		
	General d, Rest		
	Comments V		

Colored by

Multi-parametric score

Using Chemical Language Models: Practical considerations on execution

• Timing

- The lead optimization GenAI window
 - Enough data for good models
 - Still useful to explore (vs exploit)
- "Data Science is teamwork"
 - Even with chemical lead opt data
 - Curate curate curate: Speed and quality

Using Chemical Language Models: Practical considerations on integration

- Define clear and shared objectives
- From screen to compound:
 - Quality & synthetisability
 - Or BB availability?
- From screen to data: cycle time
- Acculturate on statistics
- Explicit, transparent, shared design choices
- Generative approaches as part of a strategy
 - Explainable decision making

5 binary models, success rate 0.8

$$0,8^5 = 0.33$$

Thank you!

